📒

Statistics and Probability CT:01

Created by
BBorhan
Last edited time
Tag

Resources:

Statistics

Basically use it for result finding.

Data Type:

Random Experiment & Random Value:

কোন এক্সপেরিমেন্ট করার টাইমে প্রত্যেক ট্রায়ালে যদি ভিন্ন ভিন্ন আউটকাম আসে, সেইটা একটা র‍্যান্ডম এক্সপেরিমেন্ট। যেমন একটা কয়েন টসে কখন হেড, কখন টেইল পাওয়া যাবে, তাই এইটা একটা র‍্যান্ডম এক্সপেরিমেন্ট। এইরকম একটা র‍্যান্ডম এক্সপেরিমেন্টের প্রত্যেকটা আউটকামকে একটা নিউমেরিক ভ্যালু দিয়ে প্রকাশ করা যায়। এই প্রকাশের জন্য র‍্যান্ডম ভ্যারিয়েবল ব্যাবহার করা হয়। [Reference]

A random variable is a rule that assigns a numerical value to each outcome in a sample space. [Reference]

Types of Random Variable:

Poisson Distribution

When you should use it:

μ=np\mu = np

P(x,μ)=eμμxx!P(x, \mu) = \frac{e^{-\mu} \mu^x}{x!}

Bernoulli Distribution

A Bernoulli Distribution is a discrete probability which has only two possible outcomes.

Possible Outcomes:

Success - 1

Failure - 0

Example:

P(Success=1)=PP(Success = 1) = P

P(Failure=0)=1PP(Failure = 0) = 1-P

PMF,f(x)=Px(1P)1xPMF, f(x) = P^x(1-P)^{1-x}

Expected value,

E(x)=xf(x)=O(1P)+1(P)=PE(x) = \sum xf(x) \\ = O(1-P) + 1(P) = P 

Variance of discrete probability distribution,

V(x)=E(x2)+[E(x)]2=PP2=P(1P)V(x) = E(x^2) + [E(x)]^2 = P - P^2 = P(1-P) 

Moment

Classifications:

r=nth momentr = n-th \space moment

Variance (σ\sigma)

Types:

Question Analysis:

BinomialPoisson
It is biparametric (Has 2 parameters)Uniparametric
The number of attempts are fixedThe number of attempts are unlimited
The probability of success is constantThe probability of success is extremely small
There are only two possible outcomes.There are unlimited possible outcomes.
Mean > VarianceMean = Variance

Value of x012345678
P(x)a3a5a7a9a11a13a15a17a

(i)(i) Determine the value of a

(ii)(ii) Also find P(0<x<5)P(0 <x<5)

It’s a leptokurtic curve. A frequency distribution is said to be leptokurtic, when it is more peaked than the normal curve.

Properties:

  • Approximately 68% of the data falls within σ\sigma
  • Approximately 95% of the data falls within 2σ2 \sigma
  • Approximately 99.7% of the data falls within 3σ3\sigma

Discrete random variableContinuous random variable
Has finite number of possible valuescould have any value within a certain range
Takes countable set of valuesTakes on an uncountable set of values
Described by PMFDescribed PDF
P(a ≤ X ≤ b) is meaningfulP(a ≤ X ≤ b) represents the probability of a range
Number of students in a classHeight of individuals in a population

Let XX  be continuous random variable. Then a probability distribution or probability density function (pdf) of XX is a function f(X)f(X) such that for any two numbers aa and bb with aba \le b, we have

P(aXb)=abf(x)dxP(a \le X \le b) = \int_{a}^{b} f(x) dx

b)

c)

F(x)=1exP=F(2)F(1)=e2+e1=0.23254415793F(x) = 1-e^{-x} \\ P = F(2) - F(1) = - e^{-2} + e^{-1} \\ = 0.23254415793