Signals and Systems

Created by
BBorhan
Last edited time
Tag

Resources:

Skipped:

Signals

Physical quantity that contains information. Signals are expressed mathematically as function of independent variable, which is usually time.

Example:

Basic Types of Signals:

Based on Continuous and Discrete:

Analog Signal: Continuity in any of the domain (time or value)

Digital Signal: Discrete in both time and value

Based on Causal, Anti-Causal, Non-Causal

Causal, Anti-Causal, Non-Causal

Operations on Signals

Example on Operation:

Elementary Signals

Signal Classification on Even and Odd

x(t)=x(t)x(-t) = -x(t)

Example: x(t)=t3,t5,..,t2n+1x(t) = t^3, t^5, .., t^{2n + 1}

Check a function even or odd:

x(t)x(t) is given. Find x1(t)=x(t)=...x_1(t) = x(-t) = ...

if x(1)==x1(1)x(1) == x_1(1), it is even, otherwise odd.

Converting to Odd or Even Signal

To convert any arbitrary signal which is neither even nor odd into equivalent even or odd parts:

xe(t)=x(t)+x(t)2x_e (t) = \frac{x(t) + x(-t)}{2}

xo(t)=x(t)x(t)2x_o(t) = \frac{x(t) - x(-t)}{2}

Periodic and Aperiodic Signal

Energy and Power Signals

Systems

System is a interconnection of different physical components which is used to convert one form of signal to others.

Example:

Properties of Systems

Fourier Series

Fourier Series is a sum that represents a “periodic function” as a sum of sinesine and cosinecosine  waves in terms of their harmonics.

x(t)=x(x±T)x(t) = x(x \pm T), T : Time period, x(t)x(t) is periodic.

Frequency, f=no of cycle/sec\tt f = no \space of \space cycle/sec  / rate of change

Harmonics

3rd Harmonics will dominant 2nd one because it’s magnitude is greater than the 2nd one. (9 > 5)

Dirichlet conditions of Fourier Series

Why sine and cosine\tt sine \ and \ cosine  are special to Fourier Series ?

Trigonometric Fourier Series

f(t)=a0+n=1ancosnw0t+bnsinnw0t...(i)f(t) = a_0 + \sum_{n=1} ^{\infin} a_ncosnw_0t + b_nsinnw_0t ... (i)

a0,an,bn=fourier coneffecienta_0, a_n, b_n = \text{fourier coneffecient}

a0=1T0Tf(t)dt=average of functiona_0 = \frac{1}{T} \int_0^{T} f(t) dt = \text{average of function}

Multiplying cosmw0tcosmw_0t  and integrating in (i),(i),

0Tf(t)cosmw0tdt=0T[a0+n=1ancosnw0t+bnsinnw0t]cosmw0tdt\int_0^T f(t) cosmw_0tdt = \int_0^T [a_0 + \sum_{n=1} ^{\infin} a_ncosnw_0t + b_nsinnw_0t] cosmw_0t dt

=0ta0cosmw0tdt+n=1(0tancosmw0tcosnw0tdt+0tancosmwtsinnw0t)dt = \int_0^ta_0cosmw_0tdt + \sum_{n=1}^{\infin} ( \int_0^ta_ncosmw_0t \cdot cosnw_0t dt+ \int_0^ta_ncosmwt \cdot sinnw_0t) dt

=0+n=10tancosmw0tcosnw0tdt+0=0 + \sum_{n=1}^{\infin} \int_0^ta_ncosmw_0t \cdot cosnw_0t dt+ 0

Now,n=m,\tt Now, n=m,

0Tf(t)cosnw0tdt=0tancosn2w0t=0T(1+cos2nw0t)dt=T2an\int_0^T f(t) cosnw_0t dt = \int_0^ta_ncosn^2w_0t = \int_0^T (1+cos2nw_0t)dt = \frac{T}{2} a_n

an=2T0Tf(t)cosnw0tdta_n = \frac{2}{T} \int_0^T f(t) cosnw_0t dt

Multiplying sinmw0tsinmw_0t and integrating in (i)(i),

bn=2T0Tf(t)sinnw0tdtb_n = \frac{2}{T} \int_0^T f(t) sinnw_0t dt

Fourier Series Expansion

f(t)={10t101t2f(t) = \begin{cases} 1 & 0 \le t \le 1 \\ 0 & 1 \le t \le 2 \end{cases} 

T=2T = 2

w0=2πT=πw_0 = \frac{2\pi}{T} = \pi

a0=1T0Tf(t)dt=12(011dt+120dt)=12a_0 = \frac{1}{T} \int_0^T f(t) dt = \frac{1}{2} (\int_0^1 1dt + \int_1^20dt) = \frac{1}{2}

an=2T0Tf(t)cosnw0tdt=011cosnπdt+120cosnπtdt=sinnπtnπ01=1nπ[sinnπsin0]=0a_n = \frac{2}{T} \int_0^T f(t) cosnw_0tdt = \int_0^1 1\cdot cosn\pi dt + \int_1^2 0 \cdot cosn\pi t dt \\ = \frac{sinn\pi t}{n\pi} |_0^1 = \frac{1}{n\pi} [sinn\pi - sin0] = 0

Because, sinπ=sin2π...=sinnπ=0sin\pi=sin2\pi ... =sinn\pi = 0

bn=2T0Tf(t)sinnw0tdt=011sinnπtdt+120sinnπtdt=cosnπtnπ01=1nπ[cosnπcos0]b_n = \frac{2}{T} \int_0^T f(t) \cdot sinnw_0t dt = \int_0^1 1\cdot sinn\pi t dt + \int_1^2 0\cdot sinn\pi t dt \\ = \frac{-cosn\pi t}{n\pi} |_0^1 = -\frac{1}{n\pi} [cosn\pi - cos0]

cosnπ=(1)ncos n\pi = (-1)^n

bn=1nπ[1(1)n]=2nπb_n = \frac{1}{n\pi} [1 - (-1)^n] = \frac{2}{n\pi} [n=odd]\tt [n = odd]

f(t)=12+n=12nπsinπtf(t) = \frac{1}{2} + \sum_{n=1}^{\infin} \frac{2}{n \pi} sin\pi t [n=odd]\tt [n=odd]

=12+2πsinπt+23πsin3πt+....= \frac{1}{2} + \frac{2}{\pi} sin\pi t + \frac{2}{3\pi} sin3\pi t + ....

Even Symmetry

If f(t)=f(t)f(t) = f(-t)

a0=2T0T2f(t)dtan=4T0T2f(t)cosnw0tdtbn=0a_0 = \frac{2}{T} \int_0^{\frac{T}{2}} f(t) dt \\ a_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) cosnw_0t dt \\ b_n = 0

Odd Symmetry

If f(t)=f(t)f(t) = -f(t)

a0=an=0a_0=a_n=0

f(t)=n=1bnsinnw0tdtf(t) = \sum_{n=1}^{\infin} b_n sinnw_0t dt

Complex Exponential Fourier Series

x(t)=n=cnejnw0tx(t) = \sum_{n=-\infin} ^ {\infin} c_n e^{jnw_0t}

cn=complex exponential fourier coeffiecient\tt c_n = complex \space exponential \space fourier \space coeffiecient 

cn=1T0T0x(t)ejnw0tdtc_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-jnw_0t} dt

cn=cnejnc_n = |c_n| e^{j\angle n}