Electromagnetic Wave and Radiating System CT - 1

Created by
BBorhan
Last edited time
Tag

Electromagnetic Wave: Electromagnetic Waves or EM waves are waves that are created as a result of vibrations an electric field and a magnetic field.

Microwave: Microwave are defined as electromagnetic radiations with a frequency ranging between 300MHz to 300 GHz. Example : Satellite communication signal.

Del Operator / Nabla Operator

Also known as vector differential operator.

=δδxi+δδyj+δδzk\nabla = \frac{\delta }{\delta x} i + \frac{\delta }{\delta y} j + \frac{\delta }{\delta z} k

Uses of Del operator

The Divergence Theorem :

The divergence theorem states that the surface integral of the normal component of a vector point function FF over a closed surface SS is equal to the volume integral of the divergence of F\vec F

xyz.F dv=v.F dv=sF . ds\int_x\int_y\int_z \vec \nabla . \vec F \space d\vec v = \int_v \vec \nabla . \vec F \space d\vec v = \oint_s \vec F \space . \space d\vec s

Stokes Theorem

Statement: The surface integral of the curl of a function over a surface bounded by a closed surface is equal to the line integral of the particular vector function around the surface.

CFdr=sF× ds\oint_C \vec F \vec dr = \int\int_s \vec F \times \vec\nabla \space \vec ds

Electric Field

E=FqE = \frac{F}{q}

Electric Displacement Vector

D=ϵ0E+PD = \epsilon_0E + P

Polarization density, P =ΔpΔV\text{Polarization density, P } = \frac{\Delta p}{\Delta V}

Δp=dipole moment ΔV=volume element\Delta p = \text{dipole moment } \\ \Delta V = \text{volume element}

Isotropic medium

Anisotropic medium

Ampere’s Circuit Law: The line integral of Magnetic field intensity along a closed path is equal to the current distribution passing through that loop.

HdL=Ienc=Jds\oint H \cdot dL = I_{enc} = \int\int J \cdot ds

J=current densityJ = \text{current density}

Maxwell Four Equation

Maxwell first equation: .D=ρv\vec \nabla . \vec D = \rho_v

Statement : The total electric displacement through the surface enclosing a volume is equal to the total charge with the volume. The more charge density the more Electric field.

Dds=Qenc ...(1)\oint \vec D \cdot d \vec s = Q_{enc} \space ...(1)

D.ds=.Ddv ...(2)[from Divergence theorem]\oint\oint \vec D . d \vec s = \int\int\int \nabla .\vec D d\vec v \space ... (2) [\text{from Divergence theorem}]

.Ddv =Qenc ..(3)[from equation 1 and 2]\int\int\int \nabla .\vec D d\vec v \space = Q_{enc} \space .. (3) [\text{from equation 1 and 2}]

The volume charge density,

ρv=dQdvor, dQ=ρvdvor, Q=ρvdv\rho_v = \frac{dQ}{dv} \\ \text{or, } dQ = \rho_v dv \\ \text{or, } Q = \int\int\int \rho_v dv

.Ddv=ρvd.D=ρv\int\int\int \vec \nabla . \vec Dd\vec v = \int\int\int \rho_v d \\ \nabla . D = \rho_v

Maxwell Second equation B=0\vec \nabla \cdot \vec B = 0

Statement: The total outward flux of magnetic induction (B)(B) through any closed surface is equal to zero.

From Gauss’s Law, BdA=0\oint\oint \vec B \cdot d\vec A = 0

BdA=v.Bdv=.B=0\oint\oint \vec B \cdot d\vec A = \int_v \vec \nabla .\vec B d\vec v = \vec \nabla . \vec B = 0

Maxwell Third equation: ×E=dBdt\vec \nabla \times \vec E = - \frac{d\vec B}{dt}

Statement: The electromotive force around a closed path is equal to negative rate of change of magnetic flux linked with the path. That means change of magnetic flux will create the electric field.

Faraday’s Law, ϵemf=dϕdt\epsilon_{emf} = - \frac{d \phi}{dt}

Gauss Law, ϵemf=cE.dl \epsilon_{emf} = \oint_c \vec E.dl

cE.dl=dϕdt=dSB.dadt=SdBdtda\oint_c \vec E.dl = -\frac{d \phi}{dt} = \frac{d\oint_S - \vec B . da}{dt} = -\oint_S \frac{d\vec B}{dt} da

or, S×E da=SdBdtda\oint_S \vec \nabla \times \vec E \space da = -\oint_S \frac{d\vec B}{dt} da

or, S(×E+dBdt) da=0\oint_S (\vec \nabla \times \vec E + - \frac{d\vec B}{dt} )\space da = 0

or, ×E=dBdt\vec \nabla \times \vec E = - \frac{d\vec B}{dt}

Maxwell Fourth Equation or Maxwell-Ampere’s Law: ×H=J+δDδt\vec \nabla \times \vec H = \vec J + \frac{\delta \vec D}{\delta t}

Statement: The magnetomotive force around a closed path is equal to the summation of conductor current and displacement current through any surface bounded by the path. Changing electric field creates magnetic field.

Ampere’s circuit law, cB.dl=μ0i\oint_c \vec B . \vec {dl} = \mu_0i

By Stroke’s theorem, cB.dl=S(×B)dS\oint_c \vec B . \vec dl = \oint_S (\vec \nabla \times \vec B) \vec dS

S(×B)dS=μ0i=μ0SJ.dS\oint_S (\vec \nabla \times \vec B) \vec dS = \mu_0i = \mu_0\oint_S \vec J . \vec dS

or, (×Bμ0J)dS=0\oint (\vec \nabla \times \vec B - \mu_0 \vec J) \vec dS = 0

or, ×B=μ0J\vec \nabla \times \vec B = \mu_0 \vec J

or, ×H=J\vec \nabla \times \vec H = \vec J

Modified Ampere’s circuit law,

cB.dl=μ0i+id\oint_c \vec B .\vec dl = \mu_0i + i_d [id : displacement currenti_d \text{ : displacement current}]

×H=J+Jd=J+ϵ0δEδt=J+δDδt  [E=Dϵ0]\vec \nabla \times \vec H = \vec J + \vec J_d = \vec J + \epsilon_0 \frac{\delta \vec E}{\delta t} = \vec J + \frac{\delta \vec D}{\delta t} \space \space [E = \frac{D}{\epsilon_0}]

Derive equation of continuity by Maxwell’s 4th equation

×H=J+δDδt\vec \nabla \times \vec H = \vec J + \frac{\delta D}{\delta t} \\or, 0=.(J+δDδt)0 = \vec \nabla . (\vec J + \frac{\delta D}{\delta t})

or, .J=δρδt\vec \nabla . \vec J = - \frac{\delta \rho}{\delta t}

Why Ampere’s Law is not correct ?

Ampere’s Law is valid only for steady current or when the electric field does not change with time.

.J=δρδt\vec \nabla.\vec J = - \frac{\delta \rho}{\delta t}, equation of continuity

From Maxwell fourth equation, ×H=J\vec \nabla \times \vec H = \vec J

or, .(×H)=.J\vec \nabla . (\vec \nabla \times H) = \vec \nabla . \vec J

or, .J=0\vec \nabla . \vec J = 0, [(×H)=0\vec \nabla (\vec \nabla \times H) = 0] it doesn’t match with continuity equation.

Drawback of Ampere’s Law

Problems: