DSP: Z-Transform and Basic of Filters

Created by
BBorhan
Last edited time
Tag
Year 3 Term 1

Z Transform

  • Discrete time LTI system z transform is used.
  • Z transform is mathematical tool used for conversion of time domain into frequency domain (z domain) and is a function of the complex valued variable Z.
  • Biliteral/Two sided

    X(z)=Z(x(n))=n=n=x(n)ZnX(z) = Z(x(n)) = \sum_{n=-\infin} ^ {n = \infin} x(n) Z^{-n}

  • Uniliteral/One sided

    X(z)=Z(x(n))=n=0n=x(n)ZnX(z) = Z(x(n)) = \sum_{n=0} ^ {n = \infin} x(n) Z^{-n}

  • if x[n]=0x[n] = 0 for n<0n < 0, then Biliteral = Uniliteral

Geometric Series Sum formula

  • Infinite
    • 0cn=11c\sum_{0}^{\infin} c^n = \frac{1}{1-c}
    • kcn=ck1c\sum_{k}^{\infin} c^n = \frac{c^k}{1-c}

    0<c<10 \lt |c| \lt 1

  • Finite
    • c1c\ne1

      0N1cn=cN1c1,0Ncn=cN+11c1\sum_{0}^{N-1} c^n = \frac{c^N - 1}{c-1}, \sum_{0}^{N} c^n = \frac{c^{N+1} - 1}{c-1}

    • c=1c=1

      0N1cn=N,0Ncn=N+1\sum_{0}^{N-1} c^n = N, \sum_{0}^{N} c^n = N+1

    (cc is a complex constant)

ROC

  • The set of ZZ for which X(z)X(z) is converges (gives finite value)/the set of points in ZZ-plane for which X(z)X(z) is converges is called Region Of Converges.
  • If there’s no value of zz where X(z)X(z) is converges, then sequence of x(n)x(n) is said to be having no ZZ transform.

N samples, 0nN10 \le n \le N-1

x(n)={x(0),x(1),...x(n)}x(n) = \{ x(0), x(1), ... x(n) \}

X(z)=n=0n=x(n)zn=x(0)+x(1)z1+...x(n1)z(n1)X(z) = \sum_{n=0} ^ {n = \infin} x(n) z^{-n} = x(0) +x(1) z^{-1} +...x(n-1)z^{-(n-1)}

if z=0z = 0, X(z)X(z)  is infinite.

X(z)X(z)  exists for all values of z, except z=0z=0

Defined : (N1)n0 -(N-1) \le n \le 0

x(n)={x((n1)...x(0)}x(n) = \{ x(-(n-1) ... x(0)\}

X(z)=n=(N1)0x(n)zn=x((N1))zN1+...+x(0)X(z) = \sum_{n=-(N-1)} ^ {0} x(n) z^{-n} = x(-(N-1)) z ^{N-1}+...+x(0)

if z=z = \infin, X(z)X(z)  is infinite. X(z)X(z)  exists for all values of z, except z=z = \infin.

mn+m-m \le n \le +m, m=N12m = \frac{N-1}{2}, N samples

x(n)={x(m),..x(0)...x(m)}x(n) = \{ x(-m),..x(0)...x(m) \}

X(z)=m+mx(n)zn=x(m)zm+...x(0)...+x(m)zmX(z) = \sum_{-m}^{+m} x(n) z^{-n} = x(-m)z^m +... x(0)...+ x(m)z^{-m}

z=0,z=0, \infin, there are no finite value. ROC = entire ZplaneZ-plane except Z=0,Z=0, \infin

Let, x(n)=rn;n>0x(n) = r^n; n \gt 0

X(z)=n=0(rz1)nX(z) = \sum_{n=0}^{\infin} (r z^{-1})^n

if 0<rz1<1,0 \lt |rz^{-1}| < 1,

X(z)=11rz1X(z) = \frac{1}{1 - rz^{-1}}

The condition to be satisfied for the convergence of X(z)X(z)

0<rz1<10 \lt |rz^{-1}| < 1

rz1<1|rz^{-1}| < 1z>r|z| > | r|

X(z)=n=0(r2z1)n=n=0(r21z)nX(z) = \sum_{n=-\infin}^0 (r_2 z^{-1})^n = \sum_{n=0}^{\infin} (r_2^{-1} z^{})^{n}

if, 0<r21z<1\text{if, } 0 < |r_2^{-1} z^{}| < 1

X(z)=11r21zX(z ) = \frac{1}{1-r_2^{-1} z}

Condition to be satisfied for the convergence,

r21z<1|r_2^{-1} z^{}| < 1

z<r2|z| < |r_2|

Let, x(n)=r1nu(n)+r2ny(n),n+x(n) = r_1^n u(n)+r_2^ny(-n), -\infin \le n \le + \infin

X(z)=n=[r1nu(n)+r2ny(n)]znX(z) = \sum_{n=-\infin}^{\infin} [ r_1^n u(n)+r_2^ny(-n)] z^{-n}

=n=0r2nzn+n=0r1nzn= \sum_{n=-\infin} ^ {0} r_2^n z^{-n} + \sum_{n=0} ^ {\infin} r_1^n z^{n}

=n=0r2nzn+n=0r1nzn= \sum_{n=0} ^ {\infin} r_2^{-n}z^{n} + \sum_{n=0} ^ {\infin} r_1^n z^{-n}

=n=0(r21z)n+n=0(r1z1)n= \sum_{n=0} ^ {\infin} (r_2^{-1}z)^n + \sum_{n=0} ^ {\infin} (r_1z^{-1})^{n}

If 0<r21z<10 < |r_2^{-1}z| < 1 and 0<r1z1<10 < |r_1z^{-1}| < 1 then

X(z)=11r21z+11r1z1X(z) = \frac{1}{1- r_2^{-1}z^{}} + \frac{1}{1- r_1z^{-1}}

Converges if,

r1z1<1 |r_1z^{-1}| < 1

r1<z|r_1| < |z|

r21z<1|r_2^{-1}z| < 1

z<r2|z| < |r_2|

Properties of ZZ Transform

a1x1(n)+a2x2(n)a1X(z)+a2X(z)a_1x_1(n) + a_2x_2(n) \leftrightarrow a_1X(z) + a_2X(z)

x(n)X(z),<n<+x(n) \leftrightarrow X(z), -\infin < n < + \infin 

x(nm)X(z)zmx(n-m) \leftrightarrow X(z) z^{-m} 

x(n+m)X(z)zmx(n+m) \leftrightarrow X(z) z^{m} 

x(n)X(z),0<n<+x(n) \leftrightarrow X(z), 0< n < + \infin 

x(nm)zmX(z)+i=1mx(i)z(mi)x(n-m) \leftrightarrow z^{-m} X(z) + \sum_{i=1}^m x(-i) z^{-(m-i)} 

x(n+m)zmX(z)i=1mx(i)z(mi)x(n+m) \leftrightarrow z^{m} X(z) - \sum_{i=1}^m x(i) z^{(m-i)} 

x(n)X(z)x(n) \leftrightarrow X(z), then

nx(n)zddxX(z)nx(n) \leftrightarrow -z \frac{d}{dx} X(z)

x(n)X(z)x(n) \leftrightarrow X(z), then

anx(n)X(za)a^n x(n) \leftrightarrow X(\frac{z}{a}) 

x(n)X(z)x(n) \leftrightarrow X(z), then

x(n)X(z1)x(-n) \leftrightarrow X(z^{-1})

x(n)X(z)x(n) \leftrightarrow X(z), then

x(n)X(z)x^*(n) \leftrightarrow X^*(z^*)

x1(n)X1(z),x2(n)X2(z)x_1(n) \leftrightarrow X_1(z), x_2(n) \leftrightarrow X_2(z)

x1(n)x2(n)X1(z)X2(z)x_1(n)*x_2(n) \leftrightarrow X_1(z) X_2(z)

[General convulotion : x1(n)x2(n)=m=x1(m)x2(nm)][ \text{General convulotion : } x_1(n)*x_2(n) = \sum_{m=-\infin}^{\infin} x_1(m) x_2(n-m)]

x(n)X(z),y(n)Y(z)x(n) \leftrightarrow X(z), y(n) \leftrightarrow Y(z) then

Z transform of rxy(m)X(z)Y(z1)r_{xy} (m) \leftrightarrow X(z) Y(z^{-1})

[rxy=m=x(n)y(nm)][r_{xy} = \sum_{m=-\infin}^{\infin} x(n) y(n-m)]

Finding Z transform

x(n)={1;n00;n<0 x(n)= \begin{cases} 1; n \ge 0 \\ 0 ; n < 0 \end{cases} 

X(z)=n=0μ(n)zn=n=0znX(z) = \sum_{n=0}^{\infin} \mu(n) z^{-n} = \sum_{n=0}^{\infin} z^{-n}

0<z1<1,0 < |z^{-1}| < 1,

X(z)=11z1=zz1X(z) = \frac{1}{1-z^{-1}} = \frac{z}{z-1}

Condition for converges, z1<1|z^{-1}| < 1z>1,|z| > 1,

x(n)={0.3n;n00;n<0 x(n)= \begin{cases} 0.3^n; n \ge 0 \\ 0 ; n < 0 \end{cases} 

X(z)=n=00.3nzn=n=0(0.3z1)nX(z) = \sum_{n=0}^{\infin} 0.3^n z^{-n} \\= \sum_{n=0}^{\infin} (0.3 z^{-1})^n

if 0<0.3z1<1,0 <|0.3 z^{-1}| < 1, 

X(z)=11(0.3z1)=zz0.3X(z) = \frac{1}{1- (0.3 z^{-1})} = \frac{z}{z-0.3}

Condition for converges. 0.3z1<1|0.3 z^{-1}| < 1z>0.3|z| > 0.3

u(n)={1;n100;n0 u(n)= \begin{cases} 1; -n - 1 \ge 0 \\ 0 ; n \le 0 \end{cases} 

x(n)={0.8n;n1 0;n0 x(n)= \begin{cases} 0.8^n; n \le -1 \ \\ 0 ; n \le 0 \end{cases} 

X(z)=n=10.8nzn=n=10.8nzn=n=1(0.81z)n=(0.81z)10.81zX(z) = \sum_{n=-\infin}^{-1} 0.8^n z^{-n} = \sum_{n=1}^{\infin} 0.8^{-n} z^{n} = \sum_{n=1}^{\infin}(0.8^{-1} z)^n = \frac{(0.8^{-1}z)}{1-0.8^{-1} z} 

If 0<0.81z<10 < |0.8^{-1} z| < 1, then

X(z)=0.81z10.81z=z0.8zX(z) = \frac{0.8^{-1}z}{1-0.8^{-1} z} = \frac{z}{0.8 - z}

Condition for converges, 0.81z<1 |0.8^{-1} z| < 1 z<0.8|z| < 0.8

Poles and Zeroes of Rational Function of ZZ

X(z)=N(z)D(z)X(z) = \frac{N(z)}{D(z)}, if X(z)X(z) expressed as a ratio of two polynomials z or z1z \text{ or } z^{-1}, then X(z)X(z) is called rational function of zz.

X(z)=N(z)D(z)=b0+b1z1+....+bmzma0+a1z1+....+anzn=b0a01+b1b0z1+...+bmb0zm1+a1a0z1+...+ama0znX(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1}+ ....+ b_mz^{-m}}{a_0 + a_1 z^{-1}+ ....+ a_nz^{-n}} = \frac{b_0}{a_0} \frac{1 + \frac{b_1}{b_0}z^{-1}+... + \frac{b_m}{b_0}z^{-m} }{1 + \frac{a_1}{a_0}z^{-1}+... + \frac{a_m}{a_0}z^{-n} } …. (i)(i)

=Gzm(zm+b1b0zm1+...+bmb0)zn(zn+a1a0zn1+...+ana0)= G \frac{z^{-m}(z^m + \frac{b_1}{b_0}z^{m-1}+... + \frac{b_m}{b_0}) }{z^{-n}(z^n + \frac{a_1}{a_0}z^{n-1}+... + \frac{a_n}{a_0}) }, [Scaling Factor, G=b0a0][\text{Scaling Factor, G} = \frac{b_0}{a_0} ]

=G(zz1)(zz2)...(zzn)(zp1)(zz2)...(zpn)= G \frac{(z-z_1) (z-z_2)...(z-z_n)}{(z-p_1) (z-z_2) ... (z-p_n)} [n=m][n=m]

z1,z2,...,zn:z_1, z_2, ..., z_n :  roots of numerator polynomial, zeros of X(z)X(z), marked by \circ

p1,p2,..,pn:p_1, p_2,..,p_n : roots of denominator polynomial, poles of X(z)X(z), marked by XX

Questions:

(a)

Advantages of Z-transform over DTFT system:

The Transfer Function

The transfer function H(z)H(z) of a DT linear system is defined as the ration of the Z-transform of the output signal Y(z)Y(z) to the Z-transform of the input signal X(z)X(z)

H(z)=Y(z)X(z)=n=+bnznm=+amzmH(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{n=-\infin}^{+-\infin} b_n z^{-n}}{\sum_{m=-\infin}^{+-\infin} a_m z^{-m}} 

=b0+b1z1+...+bmzma0+a1z1+...+anzn=\frac{b_0 + b_1z^{-1}+...+b_mz^{-m} }{a_0 + a_1z^{-1}+...+a_nz^{-n} }

Where, b0,b1,...b_0, b_1, ...  are input coefficient and a0,a1...a_0, a_1 ...  are output.

if ao=1a_o = 1, then this called the standard form of transfer function.

If we can convert, H(z)=G(zz1)(zz2)...(zzn)(zp1)(zp2)...(zpn)H(z) = G\frac{(z-z_1)(z-z_2)... (z-z_n)}{(z-p_1)(z-p_2)...(z-p_n)}

Then, z1,z2...z_1, z_2 ...  are called zeros and p1,p2....p_1, p_2 .... are called poles.

Distinguish between Zeros and Poles

PolesZeros
A pole of the transfer function H(z) is value of z that makes the denominator zero. A zero of the transfer function H(z) is a value of 𝑧 that makes the numerator zero.
Mathematical : H(z) = N(z)/D(z)
If D(z) = 0, at z=zp, then
H(z) → infinity as z→ zp
Mathematical : H(z) = N(z)/D(z)
If N(z) = 0, at z=zs, then
H(z) → 0 as z→ zs
Influence system stability and responseInfluence frequency response
Poles outside the unit circle indicate instabilityZeros do not affect stability directly
Represented by "X" in the Z-planeRepresented by "O" in the Z-plane

(b) Transfer function representation : X(z)=N(z)D(z)=b0+b1z1+....+bmzm1+a1z1+....+anzn=b0+b1z1+....+bmzma0+a1z1+....+anznX(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1}+ ....+ b_mz^{-m}}{1 + a_1 z^{-1}+ ....+ a_nz^{-n}} = \frac{b_0 + b_1 z^{-1}+ ....+ b_mz^{-m}}{a_0 + a_1 z^{-1}+ ....+ a_nz^{-n}}  [a0=1a_0 = 1  means normalized] .z=ejωz=e^{j\omega}

H(z)=1+z1+z21+0.5z1+0.75z2H(z) = \frac{1+z^{-1}+z^{-2}}{1+0.5z^{-1}+0.75z^{-2}} [Dividing by z2z^2]

H(ejω)=e2jω+e2ω+1e2jω+0.5ejω+0.75H(e^{j\omega}) = \frac{e^{2j\omega} + e^{2\omega} + 1}{e^{2j\omega} + 0.5 e^{j\omega} + 0.75} [Replace z=ejωz=e^{j\omega} on given X(z)X(z) of the question]

Difference equation representation : Transfer function → Inverse Z-transform → y(n)y(n)

H(z)=1+z1+z21+0.5z1+0.75z2H(z) = \frac{1+z^{-1}+z^{-2}}{1+0.5z^{-1}+0.75z^{-2}}, [Transfer function, H(z)=Y(z)X(z)=..H(z) = \frac{Y(z)}{X(z)} = .. ]

X(z)+z1X(z)+z2X(z)=Y(z)+0.5z1Y(z)+0.75z2Y(z)X(z)+z^{-1}X(z) + z^{-2}X(z) = Y(z)+0.5z^{-1}Y(z)+0.75z^{-2}Y(z) [cross product]

x[n]+x[n1]+x[n2]=y[n]+0.5y[n1]+0.75y[n2]x[n] + x[n-1]+x[n-2] = y[n] + 0.5y[n-1]+0.75y[n-2] [Inverse Z-function]

y[n]=x[n]+x[n1]+x[n2]+0.5y[n1]+0.75y[n2]]y[n] = x[n] + x[n-1]+x[n-2] + 0.5y[n-1]+0.75y[n-2]]

(c)

Idea : X(z)=N(z)D(z)=b0+b1z1+....+bmzma0+a1z1+....+anznX(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1}+ ....+ b_mz^{-m}}{a_0 + a_1 z^{-1}+ ....+ a_nz^{-n}} , make given X(z)X(z) this format and compare with this ( a0=1a_0 =1 ) where b0,....,bnb_0, ...., b_n = input and a0+...an=a_0+...a_n =  output coefficient.

X(z)=2+z+3z20.5z3(10z3+18z2+1)=4z3+2z2+6z110z3+18z2+1X(z) = \frac{2 + z + 3z^2}{0.5z^3 \left( 10z^{-3} + 18z^{-2} + 1 \right)} = \frac{4z^{-3} + 2z^{-2} + 6z^{-1}}{10z^{-3} + 18z^{-2} + 1} [Normalized]

Input coefficient : 4, 2, 6

Output Coefficient : 1, 0, 18, 10


(a) Check the answer above.

(b) Transfer function representation:

H(z)=z2+z110.9z1+0.81z2H(z) = \frac{z^{-2} + z^{-1}}{1 - 0.9z^{-1} + 0.81 z^{-2}}

H(z)=ejω+1e2jω+0.9ejω+0/81H(z) = \frac{e^{j\omega+1}}{e^{2j\omega} + 0.9 e^{j\omega} + 0/81}

Difference equation representation

H(z)=z2+z110.9z1+0.81z2=Y(z)X(z)H(z) = \frac{z^{-2} + z^{-1}}{1 - 0.9z^{-1} + 0.81 z^{-2}} = \frac{Y(z)}{X(z)}

z2X(z)+z1X(z)=Y(z)+0.9z1Y(z)+0.82z2Y(z)z^{-2}X(z)+z^{-1}X(z)=Y(z) + 0.9 z^{-1} Y(z)+0.82z^{-2} Y(z)

x[n2]+x[n1]=y[n]+0.9y[n1]+0.81y[n2]x[n-2]+x[n-1] = y[n]+0.9y[n-1]+0.81y[n-2]

(c) X(z)=3+z2+2z4z2+4z3+3z4X(z) = \frac{3 + z^{-2}+2z^{-4}}{z^{-2}+4z^{-3}+3z^{-4}}

Input Coefficients: 3, 0, 1, 0,2

Output Coefficients: 0, 0, 1, 4, 3


y[n]=x[n]+x[n1]+x[n2]+0.5y[n1]+0.75y[n2]]y[n] = x[n] + x[n-1]+x[n-2] + 0.5y[n-1]+0.75y[n-2]]

Y(z)=X(z)+z1X(z)+z2X(z)+0.5z1Y(z)+0.75z2Y(z)Y(z) = X(z) + z^{-1} X(z) + z^{-2} X(z) + 0.5 z^{-1} Y(z) + 0.75 z^{-2} Y(z)

Y(z)X(z)=....\frac{Y(z)}{X(z)} = ....

H(z)=Y(z)X(z)=....H(z) = \frac{Y(z)}{X(z)} = ....


(a) The set of ZZ for which X(z)X(z) is converges (gives finite value)/the set of points in ZZ-plane for which X(z)X(z) is converges is called Region Of Converges.

Properties:

Source

(b) x(n)={(12)n;n10;n0x(n) = \begin{cases} (-\frac{1}{2})^n; n \le 1 \\ 0 ; n \ge 0 \end{cases} 

X(z)=n=1(0.5)nzn=n=1(0.5z1)n=n=1(0.51z)n=(0.51z)1(0.51z)X(z) = \sum_{n=-\infin}^{1} (-0.5)^{n} z^{-n} =\sum_{n=-\infin}^{-1} (-0.5 z^{-1})^{n} = \sum_{n=1}^{\infin} (-0.5^{-1} z)^{n} = \frac{(-0.5^{-1}z)}{1 - (-0.5^{-1}z)} 

If 0<0.51z<1,0 < |-0.5^{-1} z| < 1,  then

X(z)=(0.51z)1(0.51z)=2z1+2zX(z) = \frac{(-0.5^{-1}z)}{1 - (-0.5^{-1}z)} = -\frac{2z}{1+2z}

Condition for converges,

0.51z<1|-0.5^{-1} z| < 1 z<0.5|z| < 0.5

Not 2, it is 0.5

Z TransformLaplace Transform
Z transform is mathematical tool used for conversion of time domain into frequency domain (z domain) and is a function of the complex valued variable Z.an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable
Used to analyze discrete time signalcontinuous time signal
Uses the complex variable Zuses the complex variable s
The set of points in z-plane for which X(z) converges is called the ROC of X(z)The set of points in s-plane for which X(s) converges is called the ROC of X(s)
Used for discrete time linear system such as digital filters and sampled data control systemUsed for the analysis of CT system such as control system and differential equation

Digital Filters

A digital filter is a system that performs mathematical operations on a sampled discrete time signal to reduce or enhance certain aspects of that signal.

Types : FIR, IIR

Basic element to design Digital Filter

IIR (Infinite Duration Impulse Response) : If the impulse response exists infinitely, it is an IIR Filter.

Cascade form for NthN-th order

K=N2K=\frac{N}{2}

FIR (Finite Duration Impulse Response): The filters have a finite impulse response function which has finite length of time.

Let, h(n),0<n<M1h(n), 0 < n < M-1, be the impulse response of length M. The frequency response,

H(z)=n=0M1h(n)znH(z) = \sum_{n=0}^{M-1} h(n)z^{-n}

We know, H(ejw)=n=0M1h(n)ejwn,πwπH(e^{jw}) = \sum_{n=0}^{M-1} h(n) e^{-jwn}, -\pi \le w \le \pi

Where, H(ejw)=αw\angle H(e^{jw} ) = -\alpha w (A system has linear phase if its phase response θ(ω) = ∠H(e^jω) = −cω for all ω and any constant c.)

where, α\alpha  is a constant phase delay, h(n)h(n) must be symmetric, if h(n)=h(M1n)h(n) = h(M-1-n)

0nM10 \le n \le M-1  with α=M12\alpha = \frac{M-1}{2} if M is odd.

Anti symmetry : h(n)=h(M1n)h(n) = -h(M-1-n)

Linear phase system fall into one of 4 categories:

  • M odd, h[n] is symmetric (Type I)

    H(ejw)=n=0Mh[n]ejwnH(e^{jw}) = \sum_{n=0}^{M} h[n] e^{-jwn}

    =h[0](ejw0+ejwM)+h[1](ejw1+ejw(M1))+...+h[M2]ejwM2= h[0](e^{-jw0} + e^{-jwM}) + h[1](e^{-jw1} + e^{-jw(M-1)})+... + h[\frac{M}{2}]e^{-jw\frac{M}{2}}

    =ejwM/2(h[0](ejwM/2+ejwM/2)+...+h[M/2])= e^{jwM/2} (h[0](e^{jwM/2} + e^{-jwM/2}) + ... + h[M/2])

    =ejwM/2(h[0].2cos(wM/w)+h[1].2cos(w(M/21)+...+h[M/2])= e^{-jwM/2} (h[0].2cos(wM/w)+h[1] . 2cos(w(M/2 - 1)+...+ h[M/2])

    =ejwM/2k=0M/2a1[k]cos(wk)= e^{-jwM/2} \sum_{k=0}^{M/2} a_1[k] cos(wk)

    As class note,

    M=Odd,α=M12M=Odd, \alpha = \frac{M-1}{2}

    H(w)=n=0M12a(n)cos(wn)H(w) = \sum_{n=0}^{\frac{M-1}{2}} a(n) cos(wn)

    H(ejw)=ejwM12n=0M12a(n)cos(wn)H(e^{jw}) = e^{-jw\frac{M-1}{2}} \sum_{n=0}^{\frac{M-1}{2}} a(n) cos(wn)

  • M even, h[n] is symmetric (Type II)

    H(ejw)=h[0](ejw0+ejwM)+h[1](ejw1+ejw(M1))+...+h[M12](ejwM12+ejwM+12)H(e^{jw})= h[0](e^{-jw0} + e^{-jwM}) + h[1](e^{-jw1} + e^{-jw(M-1)})+... + h[\frac{M-1}{2}](e^{-jw\frac{M-1}{2}} + e^{-jw\frac{M+1}{2}})

    =ejwM2n=0M12b(n)cos(w(k+12))=e^{-jw\frac{M}{2}} \sum_{n=0}^{\frac{M-1}{2}} b(n) cos(w(k+\frac{1}{2}))

    As class note,

    H(ejw)=ejwM12n=1M2b(n)con{w(n12)}H(e^{jw}) = e^{-jw\frac{M-1}{2}} \sum_{n=1}^{\frac{M}{2}} b(n) con \{w (n-\frac{1}{2}) \}

  • M even, h[n] is antisymmetric (Type III),
  • M odd, h[n] is antisymmetric (type IV)