SE

Created by Borhan
Last edited time @June 16, 2025 11:55 AM

Tag Year 3 Term 2
Resources

1. Slide from ma'am (https://github.com/borhan008/academic_files/tree/main/3-
2/5.%20Software % 20Engineering%20and % 20Information % 20System % 20Design/Slides)

2. Atkia apu's note

3. Mahir Labib Dihan sir's note, (https://drive.google.com/file/d/1d_XugXV4zqYAv8yN8puBCQNII_zcw]ljl/view)

4. Diagrams

a. https://www.studocu.com/en-us/document/fairleigh-dickinsonuniversity/digital-marketing-strategies/dfd-case-
study-with-solutionsupdated/77995749

b. https://sadamutmspace.blogspot.com/2015/06/meet-4-exercise-on-dfd-read-casebelow.html

Software Engineering is an engineering branch associated with development of software product using well-defined
scientific principles method and procedure.

Aspects Software Engineering System Engineering

Software Engineering is an
engineering branch associated with

Definition development of software product
using well-defined scientific

System engineering isa an
interdisciplinary field that focuses on
integrating and managing complex

. system.
principles method and procedure. 4
Scope Focuses on software components Holistic approach to entire system
Objective To develop, maintain and improve To ensure system functionality and
) software product integrating various parts
Method Scrum, Agile, Devops MBSE
Deliverable Software Application Fully functional system
N Broad application in aerospace,
Application IT and Software Industry

automobile

X Software users, developers and IT A broader range of stakeholders from
Stakeholder Interaction

Personals various fields

Aspect Software Program

Software is mainly dependent on Programs are mainly dependent on the
Dependency . :

the operating system. compiler.

Various software categories include

. application software, system There are no such categories of

Categories -

software, computer programming programs.

tools, etc.

The size of software generally
Size ranges from megabytes (Mb) to
gigabytes (Gb).

The program size generally ranges from
kilobytes (Kb) to megabytes (Mb).

Developer Software is usually developed by Programs are usually developed by the
Expertise people having expert knowledge person who is a beginner and has no
and experience as well as are prior experience.

trained in developing software and

https://github.com/borhan008/academic_files/tree/main/3-2/5.%20Software%20Engineering%20and%20Information%20System%20Design/Slides
https://github.com/borhan008/academic_files/tree/main/3-2/5.%20Software%20Engineering%20and%20Information%20System%20Design/Slides
https://drive.google.com/file/d/1d_XuqXV4zqYAv8yN8puBCQNll_zcw1jl/view
https://www.studocu.com/en-us/document/fairleigh-dickinsonuniversity/digital-marketing-strategies/dfd-case-study-with-solutionsupdated/77995749
https://www.studocu.com/en-us/document/fairleigh-dickinsonuniversity/digital-marketing-strategies/dfd-case-study-with-solutionsupdated/77995749
https://sadamutmspace.blogspot.com/2015/06/meet-4-exercise-on-dfd-read-casebelow.html
https://www.geeksforgeeks.org/what-is-an-operating-system/

SE

Aspect

Nature

Necessity for
Computer
Functionality

Download

Features

Development
Time

Examples

Software

are also referred to as software
developers.

Software's can be a program that
generally runs on computer.

If software's are not present in
computers, then computer is
useless.

Software's can be downloaded on
computer using internet without any
need of program.

Features of software includes
security, safety, dependability,
correctness, etc.

It requires more time to create
software than program.

Examples of software includes
Adobe Photoshop, Google Chrome,
PowerPoint, Adobe Reader, etc.

%’_& do aﬂb‘- reon

pofiusans ;
! £ »
= Whern boma#mm&.

Program

Programs cannot be a software.

If programs are not present in computer,
then also computer can function well
because of operating system.

Program cannot run on computer without
any software present in computer.

Features of program includes reliable,
cost effectiveness, maintainability,
profitability, etc.

It requires less time to create program
than software.

Examples of program includes Web
browsers, word processors, video games,
etc.

a

bu loeart - ou:{ l'h.l (Wa_‘p_..

A N fﬂﬂ&eﬂ- of omé we it

zader Ho “wean - 0wk s pdadp . That A i+ canna™
P‘;""f"'f"' the Furction i wrah buH Por. Fon exomply_
a pm'n;a reacks wean od Moo 4 eanrho

pridt any mow bd B jn e of sopheare
“id doern? wean ol +Hon ir e unguo

chat 4 clourtten of roffesans

co mpated Ho harcksaw

SE

handwarte con be wean owt Form execcimye 4€mP£1i|.J&_E

clu;ﬂ, v.'an’rbn—,"hP""P‘?'?- wre and po on. Wit fae . E
o -

Jime Afaihee of He banelutarte. rning ond han dewanne

Fut plop -.Qmm[rbm'n&.
L

Fed i’w wale

Falow cowe Pon handusceee
Tn Han Fa e can Az hew a tarndurgre
o ol warth Hm@- Latbdeb cunvae
it sy e o ke bl nd el
r_onmzéf;d a.ncdd reedchor pleaoly rlader bud —thon condes.
poed G haxckmre rMands Ahow eron an
wear. o - B
Colluwaxe dopnd wean od. Soflunne abo rbown
tgh Paloe rade o 1o jnfad rlede, Ten 4
;ﬁ&* ?noo[i-ﬁ‘cngam andd M detecin @c)"conw{&
ard Soffuware wﬂ’w[ed, Hwr H comen Jo g
(clealigal i . Tuen sles contrnua.

Jowever | afen -RJ-&‘,M"@ one olomand onnoHeon cm\"
u‘ah‘ ke And rn Hub way aldonuatrve Pofleny_
ar l‘npfeh\.emla!rbm 0ol cuet wnen Samon ol
wplace a Pofluars. Though nod having roes featwra—
in wnod a clbect. Sofleware con dedeniorade
. c-’mn@& bed el porforms _---'.'JA opercdn

a~r 1 cow P%&@f'”g o e bﬂaf}l*"ﬁ"‘a.
Todn b poflsare. oot cspen o

Fulwe cove foro poffusans

SE

Sofunxe Prwafuc{- ~ 2 type. ol

) Guanarnic product® 2 T4 moans ,-J- i c{m,am&_
n P genal for public whe. A Soflwara
o R dwamﬁ Por a rpecifre Pwnpqﬁé o
e -

Fxangle? 7 Sofrer rack w gt progian:
P:wgec-f- manqaenﬁm’ Hools .
2) Codominggd proclucts
: Soffucre. Heod- v devigrod for Ppecitic
pwzpo:oe- o oSjoron Hdoo mod Hr own
- Exzample: e bedded " contnol ..baa-/eﬁfi a‘_"- _
ot tnol pofun ke .

h&‘”@“ in legact mofluare ' : -

| Legacy roflusare implion Yod 4o PoFuware
od of dede on in nead of replacemed:
ondm_

N
hewewn i moy ke i good working
' bo 2 bustmen om {;lég,‘v,‘o{uafr owr aloed '~
wont 4o upgnade {le pofharre .
Logacy Sobtuere musd be chonged for

Y adapled o mod He e W"% |

Mp on Jecﬁnafc_’a‘/ \ o

1) enhareed o tmpfemud! o burtrgmniogivh—
-ynbf{;’ﬂ sy iasgs

’ 1)) m—dbw&r’@t:-fed fo wmalke 4 diedles .),
[@e)&mo&i 1"0 *mke i+ ,M

SE

i

@bl%mnre, by!uﬂeﬂ’“ DPM

- (open poprer i
4 | =)

morﬂu onu pnul-b\a ?:.-nC(

FOpsss Gowrrae. iy T A

Open. _h_c.vm_uz Cofaptialj_t"ﬁ'g;

&joﬁ;en: pér}ncé_ S T

Fo @hspeof poPlisna
' iU Pr9gam
L&hoag . Powlie E}‘ﬂ-

i made awculqble_ to
Hbe. weovs on clwoiopen

@japén. world mmbu}rké
Ao concept bt
Invol ver cnm,@rha compule

pgpiemt and Soffemnc
eymlroanoj' +oad amm rot

+;3ny confrrolled o reeshmc

—

ehatacleuntres ?

Any one €O view
modify omd irtribecde
e code.

D) danaciouibitos
T4 ih dr.%ran.e& 40 afap
Jo cluw\a-l'ré- 0 ' emon) 4

ond peonarubh .

(® ope rowiea npecifieally

andl openno ©f Powtee
code .

@ open wonld Cahpd”'a—

ey 40 Mo acceomiblily pn o genonal. Fenm Fht

M ooles cumpu}tid— env/non~
mants -ﬁ?r‘p_ub:!—H a ML
a.dow"!ocb; hi/ LR S

@H--m/ﬂ,’m do B
colla bonadive deve lopme

and dintnibdior. of
noffaans

. Tl ceeaﬂ ct r-#t. =
hordle. wncer dar 4y
' a{ynqhﬁ;‘a enV1'monmai-

i1

g@ an»‘p/z H

Linws OS5, Mo pella
Fineboz broweor , pgthor
Pro glam-mhé Languagl

18) Bample (ngpobichicd)
Arlrfrowd ik 'Lﬂb‘gen c.;’_

Sypdem, caden Hpe ol

nobotrcr St)LQEO‘f to

O porafe UhPRQo&c-ﬁoqb!'L

e’_hwnonmed, Qu}onohu}

Vvihaclen I

SE

Ipfontrce of Sofjuare oghring—

e SRS B R et o) compren
bcmhre Jood ool vorth He d@fgha ove lopmend
omd mam.—}qnaace of no}fan}m QPPL&JM\

‘105;'!‘;6-
%an‘ﬁﬂ’m‘?—

P Re.haiwh{-f S o2lsaree. enginesing ’em«w*%
Yo moPluwm 1 7uwhable onel opma:’m Prepen),
[Mdﬂz vanewd C e?na&-ﬁan =) .

\-R) Fﬁ:treﬂﬂf. 7L hodps op-f-rmvyz .bo.{?»}mw .,%,-L_
pexfonmance and exerg cfbeieney e E‘.‘Qg,crfﬁ[—.
poflusare. con nun on a pole range op

Hadesaree .

3)Hm'n-lm'nqbflf‘47"; Well A frieturee code. 1n €aplon
R T ——
o mamfen . 5-F allowsr developem o make
4) Cont eHhec trvenosn : Frepor. SE ,onac-ff'cm lelp ~
hahq&g p??c;\af‘ec# Mr-f-&. min| 'muan Cob'llﬁ .
) Captomen. palis Betron 'SF forwer on wpon moquipu
anol 2xPectitiom. Satbfizd curonges ae ”‘{’Ec. fr'kalj

I'JO eondinue um'ré So Pluare. P?Toa!uc;{h_‘

'G) GL,O!M.} Couqbonaolfb& s —H !}LCMQJ‘:@O ’ alolnal Co,UqLo;n_

Hion. and code- '”"“"’""’5 ' . '
o'd'ec'f' ! Somg a:z.pona:!r‘a we.

() Hondli
o p mcbiods o hendle longe PrAGet cottbodt
on~f 1Bp s .

(&) becreare. Hime- meﬁ-— SE Ae.cc:we a lo+4 o.-,Q,
b Gadigis I

il . v % g B \)

layaned - deaknolog- doen

YVooPhuane.. ngineeisg
S-E i -Pwu-/ lo\;,r.e;cecj!. .'{eclm‘a}ogf‘ o develop Soffne
W rm’-f’(«Lo ao‘ Prion " ‘onedo - arglor layee A

h‘fﬂv\ CU"’—' CO’JMC‘IEGE lo Gac&. W and eqeﬁ_ layg._

dermards * oo ClEL ot of - 48o. prEenss [ayen.
B i

! Qd‘ 2.F .eu&émmrh&"_ layert. . -
A malily oot s
Tt dofinen % 090\4!:10«!: pnoaep,a) hpﬂo"\@md—

punciples o pofuare . T provides ..naewu-l\; |
to He nofluare po ol olecla. con be arcww(:
by only an aq:ﬁ{oin'yaf Pabboh, no owtprder. .
esn accon dada’. T abo Do ol
ma-mhmqb;hif qnd' uho«.b;/r-;fy_ o
/@Pmc-ebn pookd © SWashige m Lk
Tk i the %unJJon on bare fMMOfSE
L binds all layor dogeon " tthith onableny 4ot
dmzlopmvw(of poftware bofime He d‘dmfhu
prieces moddl coverr all He G-C‘I[W-'J!M c?c'lé'c-;k

requned. Jo be (wu-uzf o . fmr. %m ﬂm)ép,,,,y

3 Mefhody © T henHe e 042 Al +&L,
-k:hkﬁ which Pncluoer commumoaalmn nea,wqm&

Andsnin Antan dorling /Gm‘l"??uﬂﬁrfch ""Oﬂwiﬁ'ﬁ

4

1 -
WO tayd G
o

_— -
\Q)/Taofb : Tools w@we f'm!ag‘lqm e ann ;'y-.}oamhq.}f%

caded B ©n8 ool con be wed bd' anodlon
'S ~ 1A P S ol .

SE

SE

Afnwmonk forn e ac-Iw.-h;y, achemn

| are. o urnd ¥obuled

\/A prie coln s a coﬂzcvl!an. of aC"I'l‘YH‘I'eA
%,‘mm ond dakp Ahod @z porfirmed ashe

Q5D o

roms W""k P?TOo/uc‘f‘ in fo be crcm:!ed

AC"”""*;’;"J?YOIY@ developmad, of Ja - AoRwarne_
!’l,.— :\\..ﬁ)éf;néﬁ an. eme.rné. rgpsden ozn-u%;ﬁ:tt
-\‘ Acrzlrm_ . An onfw-n. 7‘h - p_ﬂ‘ of Salhn -

—fﬂd— Prwducﬂ A hqam wmk pnadac/

=3 u-m

_{-\

k. Q"‘]) h' »:.u ._\'v'\[mcl’\l'/.QC‘[M d!/bl87\>
andesk . -
ek \TT9 < j brnaﬂ 500[_ racld-

A -fcusk -Fogw:-e’) on. la
lefined oeﬂme (com/um‘ n& a vnitdesd)

A software process framework is a collection of task sets.

Common Activities in software processes

e aree mory Pofure. pﬁoréﬁom bk all twelver
0 > spocifiedion ; Huluing wshed Ho ngrbom dhowd de

() bogn £ implem erdechion: debining Ha on&M'BA"b»
Tof Hu pgplen ond '-c}v\plemlﬁéq__ Ha pyrlen

Q_) Yo.hdafrom ?‘L@ck’"&— -Fﬁoa@ I a(om mﬁaﬁt%

dsas R}V Cub‘fonﬂb Mﬁrdi

uﬁéwé@m Cﬁanﬂ—tné/./&g, f,aAJzzm qceano&sclﬁ_

PRQITTE e Ccd)-ﬁaw ?TQ%JMMVJA

= o -t

Generic Process model activities

Activity What Project Team does?
Communication Communicates with client
Planning Schedules the project development
Estimates the project cost
Modeling Analyzes the client requirements
Designs algorithm and flowchart of different software components
Construction Implements and tests different software components
Deployment Delivers the software product to client
Takes feedback to improve the quality of the product if required

SE

(tommon Pzroam p howold have
e 5 P 4?30,)

Framewonk adivitiey mefn Jo e ﬁmofaw,dl(
lwks ond procesnor Hal @ commonly api)

.I{O—Loua_h.ad" Ha QOF'/&M cé’amlopwm' h_ﬁe’ (‘d&cf&fsbl_c,

AC"]’Nl"JfM ma
I)Ct‘?mmuhlclﬂﬂ'o"c ,?;-;b -HLQ» -F!rrb‘;* anoL -j?cm.enon‘}"

nTa

Jg"& _Poyz, -/-'42 C’-EVQIOPM’HI r:‘.‘.f DOP{MW \ !
Canmm:cocﬁm Ap necenpary o know 75&2, aeJqu
dm\mo[of He clied 7 me!ufu edomm«fﬁ%bx

STl

‘ &iwaﬂk 0.0‘D[P'V’;JI‘&& 0

SN L s

) P)anmn& ps. bqp;mﬂf mm a{rr_amtn& a ’“"u;*
for meducsd ‘Yo C!v"‘Ph(ba[fan 0¥ aén@fopwd
T4 inelucler wonk P)G\)'l dlorenrbo -)‘acbue;! Jw:k

" lirt of npowtee. m%“”“w‘ Q‘l(c. oF R

_) H"’Aﬂh"ﬁ- In Hun pnoaem a rnc::olel 7
enccled aovoﬂcﬁg toHa alipd Por beﬂeﬂ-'
* unolosfovolin G Tl pofuare mocdel, Pmplawzea{
bg <) Analyfbm of m&un@hﬂyaﬂﬁ £ ID Daora)l
) Comtnuclion: T} rnaJu.ofM o, co.:alz(ﬂ_ qno(
Mf)&g— Odp Ha, Fnabieh})
T4 abo i c/ka&' ’ﬁ.ﬂna' 3“3*5 .q;m(C"“ﬂ‘nmn}_)

.

5) heploymed: Tt includer jpg delivery of Poflidcm
Jo 4o cliod - o evalucdion ond feod back
[CO"MP}ZJZ on hon complele)Oﬂ. e bapin of2
e Thetr fefcfback we modify fbe prioduct Fop
JRo. .‘D.qpply' | of betlor. p?foo[ucf- '

“W'Bm@”a Ac.-vfrw-ﬁ%

.P Umbrelle acti'fen, e -f'ﬁq} -’a_kﬂ p[ace a’w‘uné. 1
noﬁua:zz - develprerdt. preocesn ﬁ::. im Pno-fagl pnoaed-
mmaarzmm:l and “acking J Tlre ac-.{m'-[-;ao offon ran

oryck Ja‘\lww{f- DPﬁ-CrierC» damfop sk

Vs sud e, ookl B 1l Vhuccess =f
e prwﬁch MT.M'«@ ah o hind ' of enbrela
becawe —Hluy cover and coond’ hac’a o [:-naao(

n:quge. 010 CLG-[N}"[.'FA
) ;1> 5%@“ progest. 'f'fmckna_ and._condnol

"
‘;
,;%:‘
:
t

. aﬂ"“’h “H. " pofhusana eam. +o cbropp PROGES
-aaamm’- —H’e@, Prcogc?c:ﬁ P[an. ond Hake oy
necopary action Jo marndain Ha pchoelude |
-'-.“) Fortmal dechni'ced reaviews ! 09

. Ohh ﬂbf-‘eh =y ok mﬂ:k Pnoaluc-fn\ -fo uncover axd
Temove eTORA befoms fley are propag-del 1O

i next aec-lm-lf At- eacl leved of 4t PNOCe™ onyon:
' axs 2valvaded ond Busd

@ Sofluara aualtly appuronce
Porform achiom Jo ewuwe Ao Pﬂﬂlducfﬁ
guakity :
Soffusare conRguwnadron mmaa&mﬂ.ﬂ?"
qua.,a of co:-:.pagw'looptbn Pnoce/vx adtm_
anc‘-& ch&" n He pofluare occww
¥) Wenk P’“’d“"‘t PW?'P‘?JTwébn ond. Pnoa’uofebn
TM-’N-I:@ {0 cneade vrodalal, o(oawﬁiﬂ
a/: -{%nm"» ond lintar are . caootred Ow[
Zi‘ aéﬂagrnfm cruJequ. .{Em, wonk pnoabr:}—
riewse . Roupable mm—;k ,Jm phodd bz backed
upy \eupable f:o-ﬁ,ﬁumm Co,hpomwfﬂ - phowld be

—

aﬂeﬁ]evzd A% masmad
eluars omd. colkedn prioaom. Pﬂoa' eC‘f amo'\

product meapwi? oo apoipt e '/mh T

deliversrg poffesrs Hed ma:% Dmaa;m need

|@ Rmk manaaehﬂwf‘

The rinks ol may I'MW» a#ed' ‘priogect
,,dcomi" or gualily con be- O‘-”‘ai‘f%@i

HO?K(ERG éwwzaﬂ Pm):crpléﬁ LV vE) |
@% Rm»an I,é A Sxdrts L do Pnowa(a Vq’uﬂ_

fo i wper
@ keep it pimple | sfupid |, AU dam&n. rhould ba an

omp[z ar PObD:bfz /b,,o‘- ho p;npfa'r_'
@ Maindum Je Yinton' A cleare viblon 1I'D

oponliad o Hbe puccon of a Poffwaxae
Pnod'ecn‘_.“

SE

et

kaﬂ" 50“— ﬁzmduo@/o%ff’ Ca.ﬂl“,” Conpume -

_aluth bpa‘r'-og—// A@;‘an and r,-,.plp,mza‘}" khou,’a
pomsone ghe il hove fo U”M'lﬂ"ﬂt ul;q‘ﬁu
aow o~ d‘ﬂfﬂa_ ’
(® 8 Open fo +he pidee

Nevere Gt”’f‘@n’ aowwel-p@ Jn-;’c: a._ .goruzz;z

@'Pfan.‘ ahead 'PC]”’ Reupe & ‘P{am_mh&_ q}zzqcﬁ
>4
for mwse ';'r_a,q(_uoe/s Llo const aum(Mrm%

Yo vales of both Jho' raupcble eomporess
ond o ba»*)(erm’s (?\-’1%9. -'-‘LJ.AJ'CLL/‘" %evw-_ﬁ‘%ﬁﬂ—r
ncomponeded < Lt e il L

@ Tun k| 2P faarn& clear compfz%f- MOH&‘C"
PﬂOo’uﬂé‘/)

3 }zg_f.om a_c-ﬁm, ,a:jrho;ﬂl— a,(myh N

1. Professional Ethics
a. Code of Ethics: PCP JM PCS
i. Public: Software engineers shall act consistently with the public interest.
ii. Client and Employer: Software engineers shall act in a manner that is in the best interests of their client
and employer consistent with the public interest.
iii. Product: Software engineers shall ensure that their products and related modifications meet the highest
professional standards possible.
iv. Judgement: Software engineers shall maintain integrity and independence in their professional judgment.
v. Management: Software engineering managers and leaders shall subscribe to and promote an ethical
approach to the management of software development and maintenance.
vi. Profession: Software engineers shall advance the integrity and reputation of the profession consistent
with the public interest.
vii. Colleagues: Software engineers shall be fair to and supportive of their colleagues.
viii. Self: Software engineers shall participate in lifelong learning regarding the practice of their profession
and shall promote an ethical approach to the practice of the profession.

Sollnrce Process poole|: s adied (4
A h‘#‘uml procesn ymodel rn | on qg,,,-}n%c—/-
Mpwenfmfim_ o.ﬁ a, Pnocem
R prveds a ob»C?flb'/'fm o;ﬂ q.ﬂpnocm
| dom Pome. particular poipoctive. TH J”Wb
| 4. Pequnce q-ﬂ e erorce p‘tcwel“a_-@—
-;-rm, [r.,-%, '[»{Ma. ;_,Q o > pz‘t&o!uo.‘lf‘ £rnom
rm-;(r\nJ ‘o He .Q,,MJQ ml,,;@z '.'fT’éL AD%

s Ozdih Pne:’o(uo-[[rfe.. oa—cfz. -

-

12

SE

\Mown Flows ¢ I \\ 3 | - Mg
. s E*}.
A procew Pl in “

iii. 4 unique process flows
1. Linear Process Flow: Linear process flow executes each of the 5 (five) activities sequentially.

f 2 & N —
s < y -
2. Iterative Process Flow: Iterative process flow repeats one or more activities before proceeding to
the next activity.

. . . o -
-—“ |~
" . . . y

3. Evolutionary Process Flow: Evolutionary process flow executes activities in a circular fashion.
Each cycle leads to a more complete version of the software.

4. Parallel Process Flow: Parallel process flow executes one or more activities in parallel with other
activities.

Flaing
e h I -
lineae precesn flow Theriadive. procesr Plo

DA linaase- prrecesn flowr @ M idenadiva
exeouwdes ecchk. of ha | piTOcer - Plow repoedlns
v pﬂa.ma.uonk aclivily e 2% mo - of
e aclinhis befone
.Pﬂt)f‘QO‘dn? 4o e
W ae m"h B
. SEQCIL FJM/‘!’_ mu/:‘)L be @ Domn’jl ﬁ}/_o‘&-
S wmplpg& b?_a%m mam&_‘ W ke S

fo Haa . mxf' Ph“"i i N_ L R A
OHO&A v e B 1ha

ERHEE e
orcktsrsne o\, |
Nl Plcble ot all (B) rck Plositle
O Choméﬂb £ movine G D&,ﬁ\/

in Peguence:

v &

N ab% el
e Freed 8«
@ Wa[m-ﬂzﬂ moolel @ et

Sanom

P !

13

SE

\~ Wn Pa/&a'm = yﬂ-?)' \
) g

Z)

A prnocem patlen. deseeibes p rroce —nal_a:lecﬂ
pnabfuiiﬁ’ '42)1.:Cd{7\-1[-efg.dd_ o(um;na— Q.E wonk
TL con be wed 1o doreribe a - prioblem end
nolikion, . awwocieded wridl framewenk actinires in

g

home sifcedtont,

Types of process pattern:

1. Task Pattern : Problems associated with a software engineering action or work task and relevant to successful SE
proactive are defined by task pattern. Example: Requirement gathering.

2. Stage pattern: problems associated with a framework activity for a process are described by stage pattern.
Example : Establishing communication

3. Phase Pattern: Phase pattern defines the sequence of framework activities that occur with the process, even the
overall of activities are iterative in nature. Example : Spiral Model or Prototyping

Template for describing process pattern

1. Pattern name: meaningful

. Intent : Objectives

. Pattern type:

. Initial Context : pre-requisite or conditions
. Problems :

. Solution:

. Resulting context

. Related pattern

© 0 N O o b~ W N

. Known uses & example

Example from GFG:

Pattern Name: Prototyping Model Design

Intent: Requirements are not clear. So aim is to make an model iteratively to solidify the exact requirements.
Type: Phase Pattern

Initial Context: Before going to the prototyping these basic conditions should be made

1. Stakeholder has some idea about their requirements i.e. what they exactly want

2. Communication medium should be established between stakeholder and software development team to ensure
proper understanding about the requirements and future product

3. Initial understanding about other factors of project like scope of project, duration of project, budget of project etc.
Problem: Identifying and Solidifying the hazy and nonexistent requirements.
Solution: A description of the prototyping should be presented.

Resulting Context: A prototype model which can give a clear idea about the actual product and that needs to be
agreed by stakeholder.

Related Patterns: Requirement extraction, Iterative design, customer communication, Iterative development, Customer
assessment etc.

Known Uses & Examples: When stakeholder requirements are unclear and uncertain, prototyping is recommended.

Procon _impamenak' maons - ondiplorclizg ei
Priceors’as omd changing J—&me, PTLOQeAR 2n

+o incmeare product %w("lz on/ad reduc,
oh-l-/s ovd oloveloprarth diime-
P Py orvelopto TR

Two Lrpes of procen \mpriove ment o

) Procow makanily approack?

HTTFT company U imm HWHwE A
= Rer F®@ (mprove A FA)
T procow makoudy oppnoach athiek focuse
on lmPﬂQVl& priocows and progect MM%NIO%
omal Inﬁoo(ucrna, aood P oflusrte. ‘2"@"”‘””"3‘\

Pnac'flce . s "
: i |
(D Agile _approach: poble g

The process impnovanwat c&d@

Process Improvement Cycle:
1. Measure - Collect data on the current process to establish a baseline.

2. Analyze - Study the collected data to identify performance issues and
improvement opportunities.

w

. Change - Implement modifications to the process based on analysis findings.

Capability motwridy Leveds (5 LLVbL>S (QEIB/
LR procen ., madwnity icentify @ Spodr =t S
am 932 BY Level Follow Z3)

(PHQM‘,,‘-“Z
Pmodnv}-

rmom a—{"-“'

A The bed copoliliy maanidy Vapodel 5 -
Dlevel—1 1 wahiel ‘ -
W= -Q%ET\'H% omcmbrialled. '(FMMW/“
O Tspeskobls 1 sor
#A7 P“‘“a“t‘l’ o priscedune,
SR i “
@ dediud ¢ 0 LD
PrEOCEs - vr\om«{)«cm% 'Pmcax)um

g gk A Al

°
>

Cgusd G
& ophimbigs | besd
prcen ‘IWFWVLW?"% S}\’n_diaim
»LL;-EW-& g use . !
Software Development Life Cycle (SDLC) consists of the following seven stages:

1. Planning: Identify the problem, assess the need for a new or alternative system, set project scope, and create a
detailed project plan.

2. Requirement Analysis: Gather and prioritize business requirements through collaboration between users and IT
specialists.

3. Design: Create technical blueprints including architecture and system models to outline how the system will
function.

4. Implementation: Convert design documents into actual code by building the architecture, database, and programs.

5. Integration & Testing: Ensure the system meets business requirements through defined test conditions and system
testing.

6. Deployment: Distribute the system to users, provide training, and implement using methods like parallel, plunge,
pilot, or phased approach.

7. Maintenance: Provide ongoing support, fix bugs (corrective), adapt to changes (adaptive), and improve
performance (perfective).

Waterfall Prototyping Spiral

Definition Different activities are | Involves development | A prototype is buil, | Development of the

executed ina. and deployment of a tested and then software product

sequential and series of versions of | reworked as necessary through a series of

systematic manner. | the software product, | until an acceptable versions of that

known as increments. | outcomeisachieved | product. Deals with

from which the the uncertainties in

complete system or software project by
product can be incorporating different

developed. risk analysis

techniques throughout
the process.

Project size Small
Requirements Well-definedand | More or less fixed and Vague and likely to change
known before the :

starting of the project
Phase 1 The process begins | A simple functioning One or more “The first loop may
with communication, | system, knownascore | prototypes of the result in the
where requirements | praduct, which handles | software productare | development of a basic
are collected from the | basic requirementsis | built with currently | prototype of the final
client and first developed and known client product.
documented. delivered. requirements before
the development of
final product,

Phase 2 Tn planning phase, the | Client feedbackis | The client evaluates | The subsequentloops
time and financial collected after each the prototype and may result in the
constraints of the | incremental delivery to | provides feedback as | gradual development

project are estimated, | incorporate in the next | well as additional of more mature
resulting in a schedule increment requirements which versions of the
and a budget. getincorporated in product.
next prototype.

Phase 3 Then, adesign of the | Multiple increments This workflowis | This spiral continues
software product is are delivered by repeated until the until an acceptable
crafted in modeling adding more prototype evolves into | software product is

phase based on functionalities, as per | acomplete product, | builtand delivered to
gathered requirements the client acceptable to the the client.
and keeping project | requirements, until the client.
constraints in mind. | final version of the

product s released.

Phase 4 In construction phase,
essential code is
generated and tested
to build the final
product.

SE

Phase 4 In construction phase,
essential code is
generated and tested
to build the final
product
Phase 5 Finally, in deployment
phase, the product is
delivered to the client
and necessary
maintenance is
provided based on the
client feedback

Advantage Simple model to use | _Flexible to changing Promotes active Rigorously tackles
and implement. requirements. involvementofthe | risks associated witha
client project
Easily understandable | Modifications can be Any type of changes
made throughout the can be incorporated
process even ata later stage of

the process

Easily manageable as | Errors are mitigated as | Client feedback helps
requirementsare | the product is assessed | to better understand
known before the | by the client after each | the productand

starting of the project | incremental delivery facilitates early

detection of error in
the product

Functioning software Detailed client

productis available at | requirements are not

the early stage of the | needed to start the
process project

Product can easily be
tested because of
multiple iterations

The initial project cost

is lower
Disadvantage Ttmay become tough | Breaking the problem | Prototyping can slow | Process gets costly and
for the client to into increments is down the process complicated
provide all the difficult
requirements
beforehand.
Testingand client | Total project costis | Frequent changes may Requires risk
evaluation are carried high increase complexity of | assessment expertise
outin the last phases the system

resulting in high risk
Tteration of activities is | A complete planning of | Client dissatisfaction
not promoted which | the project s required | may lead to scrapping
may be crucial for before committing | of multiple prototypes
some projects.

Refining requirements
in each iteration may
affect the software

-JJJ_P]

Phases of the V-Model

Left Side (Development):
1. Requirements Modeling — Understand what the system should do
2. Architectural Design — High-level system design
3. Component Design — Detailed design of each module

4. Code Generation — Actual coding of components

Right Side (Testing):
1. Unit Testing — Test individual components
2. Integration Testing — Test interactions between modules
3. System Testing — Test the complete system against design

4. Acceptance Testing — Validate system against user requirements

Problems with Prototyping (Short): S e m q u e S

1. Unclear Requirements — Users may keep changing their minds.

2. False Expectations / User Confusion — Users may think the prototype is the final

system and misunderstand its purpose.
3. Too Much Focus on Ul - Backend logic may be ignored.
4. Delays - Frequent changes can slow down progress.
5. Higher Cost — Repeated updates can be expensive.

6. Not for All Projects — Bad fit for complex or secure systems.

Explain how both the waterfall model of the software process and the prototyping model can be accommodated in
the spiral process model. (5)

the spiral process model accommodates the waterfall model by breaking it into iterative phases and accommodates the
prototyping model by allowing for the creation and refinement of prototypes in each iteration.

17

SE

The waterfall model can be accommodated in the spiral process model by having each iteration represent a phase of
the waterfall model. For example, the first iteration could focus on requirements gathering and analysis, the second on
design, the third on implementation, and so on.

Similarly, the prototyping model can be accommodated by using the spiral model's iterative nature to create and refine
prototypes in each iteration, incorporating user feedback and refining the prototype until it evolves into the final
product.

Steps

i. The first loop may result in the development of a basic prototype of the final product.
ii. The subsequent loops may result in the gradual development of more mature versions of the product.
ii. This spiral continues until an acceptable software product is built and delivered to the client.

wified Procem i A Umel\eal procems 1p @
Coblusaze developmard procons _,L&oa’- wer Ha
UML ¢ [anguage Ao o prmerd edels off e

| Coflumne. nyPIem do be oltvzivoﬁéo),'/.?}‘ s we
dnsven, anchileotans - contnie_ onadive_en ol
eomardel . poBliue procen
Unebied Moc@[l’na Lan&n‘b«&é~ ((/H‘L) : |

W}% uncfred Proccoss s pard) do! bo. prioces

D S} uiere. pnod'zm,/\ @ /an_acg aonj)/z)t
2D ey’ deliveree ok mex-/) -
F)mony Phate ‘

elaboration

inception

construction

Rel i
Fleese ‘ transition

software increment

\ These slides are desig

production Engiineering: A i
(McGraw-Hill, 200

Short Summary of Phases:

1. Inception
¢ Focus: Communication & Planning
* Define project scope using use-case model.
¢ ldentify customer needs, estimate cost/time.
+ Create project plan, goals, risks, and description.

* Reviewed against milestone; may cancel/redesign if failed.

2. Elaboration
¢ Focus: Planning & Modeling
¢ Detailed evaluation and risk reduction.
¢ Refine use-case model (~80%), update business case and risks.
¢ Milestone check again; may cancel/redesign.

¢ Build executable architecture baseline. ¥

3. Construction

¢ Focus: Development & Testing
e Build full system/code.

¢ Perform testing and coding.

4. Transition
¢ Focus: Deployment
¢ Release to users/public.
* Move project to production.
e Update docs, conduct beta testing.

¢ Fix issues based on feedback.

gilty. refon o e obilily of o poflume
dove|opmedt Jeom on ’Wa“’"-’é"”'b"' "}o Tasponel
q)u‘ck}y ond e-@’eo-l/'jﬂ/l 1o c[mn,q.)‘n& rTa g TEmR
WL oo - mles 2Hechive communicedion orm ong
all — plakehololev: - i e

i anel . Hhe . cart 'c-ﬁ-ahgé/ o B Po
Agir et LA S P v
L itall Dose) w0 ‘7\02 o™ ¥
i RN

A;FLanmm/ coﬁ.f f

Principle: Some changes frequently bring business motivation for working sustainably through simple self-reflection

1. Customer Satisfacton

SE

SE

. Welcome changing requirement

. frequently derliverable

. business and developer together

. supportive and motivative environemtn
. face to face conversation

. working software is the progree

. sustainable developement

© 0 N O o A~ W N

. technical power and good design

,_
o

. simplicity

—
I

. self organized team, best architecture, design

. the team reflects how to become more effective

—
N

%r‘/@ Adoam momber w‘\m“ have ¢

- - NV RN . - _

O ompAence (@) ngngt?'{focm v (oﬂo\b?g“
@ Decratons r:v{qkl'a'/ T'qli't!""/f, @:Pgablam »po/v:’-.g_

. a‘bl-'l/'l,/
/\"{uo\luaj -[-mwS” & nespect @w ‘a\paomi'll-u’/b,.,

i. Extreme Programming
1. Whatever the beneficial software engineering practices are, they should be taken to extreme
levels, from day one.
2. Promotes pair programming.
3. Advantages
a. XP encourages simple code which allows modification at any given time.
b. This process model promotes testing codes from day one, resulting in more agile software
development.
. XP maintains an energizing and uplifting environment for developers within a project team.
4. Disadvantage
a. The extreme focus on coding can lead to neglecting design, resulting in degradation of
software product quality.
b. Lack of documentation and monitoring may lead to repetition of similar error in the future.

Basic activity of XP programming

1. XP planning : user-stories, cost and create a release plan, delivary date, progress velocity after first increment

2. XP Design : KISS, CRC card, refactoring
3. Coding : Pair programming, unit test

4. Testing : Unit test, Acceptance test

Aingsram 5 » ‘2 -polujlb"”
=
-\ e g CQ,—,A protottper
O
v N
5 A
0‘;}\\)95@0"?

BN

jrend ot
Bof i P27 T
g et Mloing j
ccom > ST oRON | il ek adlod Toof

Industrial XP :

» Organic evolution of XP

20

» six practices on XP project works successfully for significant project
o Readiness assesment : development environment, skill team, support
o Project community : right people, well-trained, proper contribution
o Project chartering: business policy ensures
o Test driven management : measure criteria/metrics to progree
o Retrospective : specialized technical review

o Continuous learning

2SS N

K/~ xp) TxP

D X2 @ =L @B]

@ ”mefad- hrmx/u £ Wo!vhn;‘ @ lange. organigaxioy -
on a\amg 10n ;

@havaw_mrea‘m B doesnd have”

anol '7’04’9/‘

SCRUM

e Scrum prioritizes simplicity in a project and develops product in a gradual manner with frequent
delivery.

e Sprint: Planning = Implementation - Product review - Process review

e The Daily Scrum is a short, daily meeting where team members discuss progress and plan their
work for the next 24 hours.

« Advantages
o less authority and hierarcy
o adaptability
o less time to become deliverable
o more client involvement
« Disadvantages
o small project team
* 3 Questions
o What did you do since last scrum meeting ?
o do you have any obstacles?
o what will you do before next meeting ?
e Product backlog : list of features collected from customers
« Sprint backlog : prioriesed backlogs
» backlog item : sorted according to priority

* meeting : 30 days 15 mins

SE

co'mn\onL/ wredd ’n 0 Soflwnane.

g prid Backlog Biﬁaa

J/ . g RS
% Teom mmnbeﬁ-mpom: C '?W\tli'u-a‘@) ‘

Prmaluc"‘ hed- i sor o | I At mord
@ backlo th:'lnc& /m+§:;:m'»:!r S ez end

9o

2
- e

fhom buse omy of e

obntacles € Spn'»v{

wifi” gou do
1. neit meadinn 9

X/ Seruem I

¥Pp N

@anm-n HJearm wonk

ee © mon

@ xp Ffom won K

-2 weks on

@do 4 allous @ q,l(o:.; G&umam' I Q

Changen 1h Heeoh

Ling |i'ne .

. P N

@ 74 doenwF pzi)‘ @ KF » o"0> 44«}‘

Jlordion =1
9‘%"@"—"‘5 pracirce
o) developer phould do.

Adeve loperen I;Lah/u’“ -
e dea \ grhuns

bedlen wﬂk""‘"ﬁ

B ok e et
;‘ % He ownne of

&) Hark prea >

ba' éub-ﬁahw 4

I v Pm‘)dxm{ lm}' /;-I-v-u‘C'f-}\/“ v = ; PO

“ witl Plexib it ‘ :

[Ie

@ Cersdomen Frvelvemesd— mone. -

I\ in e, - el G
quatfnﬂ Mocled V- Mooled .

'h o peguindial

o!,wg_}opm.ﬁh?!’ MOC‘Z\‘J

Elows ke hﬂfdmee\ﬂ

D Wadee Rl Moclel |(D V-qupéo(prioged

cleve lop parck moclid__

@D ‘!‘@%lh&_ o cour l;‘L
on‘]y co.n_/-\'l!ﬂu.cil‘o‘.‘:L

Shabe.

@ 720-#7\3. oW
e eveny phare-

commum'm)nr‘o, p’anml.&
Mook lin comv‘ﬂuta-ﬁbn/

E)piame,. ;cot;z, a8 @

REQAJ-WL!*JF moa&h'ha‘
Arechidecdunad dorign
aompone»d—' alabr‘a.»l ‘)
ceole gerensdivn

@ Higher ek

A‘P’“Ymn“- ‘
@ Lomdded uk'pcn{uu#f@ emLH Qualetk
Jo fela“'tmk oAD. (B

pobprble

R . o W
“ @ - Ealy p‘g{;a\;‘lﬁ’b.,(.,

a'ﬂlr’u?’ik)

22

SE

P”o"l’ OJ'T’P"”‘% B S‘pfi'qu
(1) Rough devizn (D' well planed g

é .Tn_vafvpﬁ Jto C”@“‘I"”® Tavolven WP@?’(‘PG(
of profetype: baved] cac/z of Piﬂ””"""é’

on ford back . -)%J,;.a_ o
é cliend :‘nv'olmmzﬁ— @a(epe ;AOZ.QG,/ N
or. L bare . = ve lep
groator. P L
2 well puidecd PO |@ dpolartach
c e o esuireret condinuer upe‘:/affgo(
progect ' progect- g
¢ Lewviel COMP’EM47-
@"J_gm Ak @ more
h'\ahaa,ap\ghy\"

Requirements analysis involves understanding what the system should do, how it interacts with other systems, and
what limitations or constraints exist.

Phases of Requirements Engineering

"l Enjoy Every New Software Version"

Phase Purpose

Inception Ask b?sic questions to understand: - the problem - who needs the solution - the expected solution - communication
effectiveness

Elicitation Gather requirements from all stakeholders (users, customers, developers, etc.)

Elaboration Build detailed models to capture: - data requirements - functional requirements - behavioral requirements

Negotiation Prioritize and resolve conflicts among requirements. Agree on a feasible version of the system

Represent requirements using: - written documents - models - mathematical formulas - use-cases -

Specification) .
prototypes"Write More Formally Using Prototypes”

Review the requirements to find: - errors or misunderstandings - Clarification needed - unclear or missing

Validation information - inconsistencies - unrealistic/conflicting expectations"Every Cat Might Ignore Rain”

= Types of Requirements

Type Explanation

Business Requirements High-level goals, objectives, and needs of the organization.

Stakeholder Requirements Expectations and needs of each stakeholder group (users, customers, etc.).

Solution Requirements Specific features and functions that the system must include.

- Functional Requirements What the system should do (features, user interactions, business rules).

- Non-Functional Qualities the system should have (performance, security, reliability, etc.). Also called quality
Requirements attributes.

Requirements needed for moving from the current system to the new one (e.g., data migration,
training).

Transition Requirements
Functional Requirements

@ Definition:

Functional requirements describe how the system should behave under specific conditions. They define features,
actions, and rules that the system must implement.

@ Key Characteristics:

23

e Must be precise and clear for both developers and stakeholders.
o Describe what the system should do.

» Often documented using use cases.

€ Examples of Functional Requirements:

» Business rules

« Transaction corrections, adjustments, cancellations
« Administrative functions

« Authentication

o Authorization levels

o Audit tracking

« Reporting requirements

o External interfaces

o Certification requirements

o Historical data

Non-Functional Requirements (NFRs)

@ Definition:
Non-functional requirements define the quality attributes of a system. They focus on how well the system performs,

rather than what it does.

@ Key Characteristics:
» Define system standards, constraints, and qualities.

» Used to evaluate system performance, usability, and reliability.

@ Examples of Non-Functional Requirements:

Category Examples

Performance Response time, throughput, resource utilization

Capacity Data volume the system must handle
Availability Uptime percentage or hours
Reliability Frequency of failure or errors

Recoverability Ability to restore from failures

Maintainability Ease of making updates

Serviceability Ease of system support

Security Data protection and access control

Regulatory Legal or industry compliance

Manageability = Ease of system monitoring and management
Environmental Constraints based on the operating environment
Data Integrity Accuracy and consistency of stored data

Usability User-friendliness and interface design

SE

Funel fnal Roguinoment- J_Non Finedonaf Redeanemant
Do(g}acm‘Lg, c‘ﬂ/«;a% M& @Aou} S /)doq[gm

pylem o wonk
D befine procket | (D) prochat pmperchies
Feadeore.
Dras on wor. (@ o on, wee
MW'MM*J/ \ expéa '”fl :

/
7S b iy o] dfired B el

. Tor A =

Eyardelns, | ot mencleton o —
Qr | o@uubxé/b~ nq

P rdltodion, | @ ks

— LY

unOHI-EG%b’L

Elements of the Analysis Model

@ 1. Scenario-Based Elements

Type Explanation
Functional Narratives describing software functions
Use-Case Interactions between an actor and the system

@ 2. Class-Based Elements
o Extracted from the scenarios

» Define data and objects within the system

€ 3. Behavioral Elements
« Describe how the system behaves dynamically

o Example: State diagrams

@ 4.Flow-Oriented Elements
* Represent the flow of data
« Example: Data Flow Diagrams (DFDs)

Use Cases

@ Definition:

A use case describes the interaction between a user (actor) and the system to achieve a specific goal.

€ Main Components:

Element Description

Actors Users or systems that interact with the system. They can be primary or
secondary.

System Behaviors/functions the system must support.

Goals The purpose of the interaction (what the actor wants to achieve).

@ Actor Types:

Actor Type Role

Primary Initiates the use case, interacts directly with the system (left side of the diagram).

25

SE

Secondar Supports the system, used by the system but doesn't initiate interaction (right side
y of the diagram).

@ Representation Formats:

« Use Case Specification (text-based description of steps, actors, outcomes)

« Use Case Diagram (visual representation using UML notation)

Symbol Name Symbol

Actor

Business Actor

Use Case

Business Use Case

() > >0

Association >
Dependency 0 o s-eeeeeeeeoooaod >
Generalization >

26

SE

<<include>>

Connection between Actor and Use Case

Boundary of system

Include relationship between Use Cases (one UC must
call another; e.g., Login UC includes User Authentication UC)

<<extend>>

Extend relationship between Use Cases (one UC calls
Another under certain condition; think of if-then decision points)

(subject, system boundary

multiplicity

association
actor

\b_ 1.

Customer

include —
relationship

use case

© vuml-diagrams.org

«Subsystem»
Checkout
«extendj P /extend relationship
Checkout —

actor
Clerk

R
0. /1 7 :i‘l

Payment Service

) \
«includen»

Payment

multiplicity

Manage
Users

Administrator

27

Use case: Distribute Assignments

Actors: Instructor (initiator)

Type: Primary and essential

Description: The Instructor completes an assignment and
submits it to the system. The instructor will also submit the
due date and the class the assignment is assigned for.

Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: Configure HACS must be done before any user
(Instructor or Student) can use HACS

The
Unified Modeling Language (UML) is a standardized visual modeling language used in software engineering to
specify, visualize, construct, and document the artifacts of a software system.

1. Activity Diagram

Definition: An activity diagram is a type of UML diagram that illustrates the dynamic aspects of a system by showing
the workflow of control from one activity to another. It emphasizes the sequence and conditions for coordinating
lower-level behaviors.

« Activity Diagrams to illustrate the flow of control in a system and refer to the steps involved in the execution of a
use case.

Purpose: To model the flow of control in a system, often used to describe the steps in the execution of a use case.
Key Points:

* Represents parallel and conditional paths.

» Focuses on flow conditions and transitions.

o Useful for modeling business processes and workflows.

Activity Activity

Initial Node End Node Transition Action
Decision Fork Join
Rendezvous

28

SE

Fork

. Start State

Activity

Branch

Customer ATM

Request Pin

@

Forget Pin

Processiong
Pin

Requset Amount to
Withdraw

Processing
Armount

Processing

.— End State

Bank

Authorize Card

Authorize
Withdraw al

Get Cash withdraw al

2. Sequence Diagram

Definition: A sequence diagram describes the interaction between objects in a sequential order. It shows how objects

communicate with each other through messages over time.

Purpose: To represent how different parts of the system interact in a particular scenario.

Key Components:

 Lifelines: Vertical dashed lines that represent an object's presence over time.

+ Messages: Horizontal arrows that show the communication between objects.

Use:

29

SE

» To describe real-time specification and usage scenarios.

« To model the logic of a complex operation or workflow.

Types of message

> Simple, also used for asynchronous 4 S}‘ﬂfh[@ﬂ()US

Reply or return message

Create message

H Found message

H@ Lost message s

Delete message

Caller Phone Recipien
M Picks up -
Dial tone
e ;
Dial Ring

S Picks up

3. Data Flow Diagram (DFD)

Definition: A DFD is a graphical representation that illustrates the flow of data through a system. It depicts how input
is turned into output through a sequence of transformations.

Main Parts:

« External Entity (Actor): Source or sink of data (represented by rectangles): Actors are the active objects that
interact with the system by either producing data and inputting them to the system, or consuming data produced
by the system. In other words, actors serve as the sources and the sinks of data.

* Process: Transformation of data (represented by ellipses) : Processes are the computational activities that
transform data values. A whole system can be visualized as a high-level process. A process may be further
divided into smaller components. The lowest-level process may be a simple function.

» Data Flow: Movement of data (represented by arrows): Data flow represents the flow of data between two
processes. It could be between an actor and a process, or between a data store and a process. A data flow

30

SE

denotes the value of a data item at some point of the computation. This value is not changed by the data flow.

« Data Store: Storage for data (represented by parallel lines): Data stores are the passive objects that act as a

repository of data. Unlike actors, they cannot perform any operations. They are used to store data and retrieve the

stored data. They represent a data structure, a disk file, or a table in a database.

Flow Modeling Notation

external entity

process

/ data flow

data store

These slides are d

d to accompany Softwar ing
cGraw-Hill 2009). Slides
2009 by Roger Pressman.

A Practition

copy

Supporting Elements:

« Constraints: Conditions that must hold true during data processing (represented by braces {}).

Incentive
{Dept : Sales } @

Employee Details

Increment
{Dept : HR}

« Control Flows: Boolean values controlling the activation of processes (represented by dotted arrows). A process
may be associated with a certain Boolean value and is evaluated only if the value is true,

Test that Divisor
is Not Zero

Divisor Quuotient >
Divide

Dividend Remainder‘

r Fal

4. Data Dictionary

Definition: A data dictionary is a centralized repository that contains metadata about the data (i.e database) in the
system, including definitions, relationships, sources, usage, and formats.

» A data dictionary contains metadata i.e., data about the database.
e It plays an important role in building a database.

Purpose: To standardize definitions and facilitate consistency and communication among stakeholders.

31

The data dictionary in general contains information about the following:
» Names of tables and fields in the database
« Constraints on tables in the database
» Physical storage and access methods.
Advantages:
« Provides well-structured database documentation.
« Helps identify redundancy.
» Aids database administrators in management and maintenance.
Types:
« Active Data Dictionary:

o An active data dictionary is a type of dictionary that is very consistent and managed automatically by the
DBMS.

o Automatically updated by the DBMS.
o Changes in the database are reflected immediately.
o No external maintenance required.
o Cost-efficient and consistent.
« Passive Data Dictionary:
o Maintained manually or through external tools.
o High maintenance cost.
o Prone to becoming outdated.

o Difficult to manage, less reliable than active types.

Definition of tables,
stored procedures, etc.

Automatic update
maintained by DBMS

User databases
holding actual tables ——

1 Manual update or
and data 1
f¢—— maintained by third
party tool

PASSIVE
DATA
DICTIONARY

L]

Four Categories of Data Dictionary:
1. Data Flows: Collection of data elements. Data flow is a collection of data elements
2. Data Structures: Groups of elements. Usually algebraic notations

3. Data Elements: Basic unit of data with specific definition. Data elements definitions describe a data type.

4. Data Stores: Data stores are created for each different data entity being stored.

Active Data Dictionary

The database management system automatically

maintains the active data dictionary.

The active data dictionary is very consistent with the

structure and the definition of the database.

Another name of this dictionary is integrated data

dictionary.

The database management systems automatically

manage this dictionary.
It doesn't require any separate database

Mostly, relational database management systems
(RDBMS) contain this type of dictionary as it can be easily
derived from their system catalog.

It doesn't provide a good User Interface

The information in an active data dictionary is up-to-date

as it is automatically managed.

1. Class Model

A class model is a conceptual representation that describes the structure and behavior of objects within a software

system. It defines:
« the objects to be manipulated,
« the attributes and operations associated with them,

« the relationships among these objects,

Passive Data Dictionary

The passive data dictionary is modified whenever the

structure of the database is changed.

As the process of maintaining or modification is manual,
so it is not consistent and not updated with the current

structure of the database.

Another name of this dictionary is a non-integrated

dictionary or a standalone dictionary.

The users are responsible for manually managing this

dictionary.

It requires a separate database for working with this

dictionary.
As the passive data dictionary requires a separate
database, so it allows the programmers to remain
independent of using a particular RDBMS.

It provides you a friendly User Interface

The information in a passive data dictionary is not up-to-

date as it is managed manually by the users.

« and the collaborations that take place between the classes.

2. Data Modeling

Data modeling is the process of analyzing data objects without considering the processes acting upon them. It focuses

on:
« independent data objects,
e their structure and characteristics,
o the relationships among them,

¢ and the customer's level of abstraction.

It creates a conceptual view of data that reflects how the end-users perceive it.

3. Data Object

A data object is a representation of any composite information required by the software. It can be:

« an external entity (e.g., user, sensor),
« athing (e.g., report, document),
e anevent (e.g., alarm),

e arole (e.g., administrator),

SE

SE

» alocation (e.g., warehouse),

e or a structure (e.g., file or table).

| A data object only encapsulates data — it does not define operations or behaviors.

4. Attributes
Attributes are descriptors or properties that define the characteristics of a data object.
Example:

o Object: Automobile

o Attributes: make, model, price, bodyType , color

5. Relationship

A relationship represents the connection between two or more data objects. It describes how objects are associated
or interact with one another.

Example:
* A person owns a car.

o A person is insured to drive a car.

6. ERD (Entity Relationship Diagram)

An ERD is a graphical notation used to illustrate data objects (entities), their attributes, and the relationships between
them. It includes:

o Entity symbols

« Relationship connectors

« Cardinality/multiplicity indicators such as:
o (1) - exactly one

o (0,m) - zero or more

7. Class-Based Modeling

Class-based modeling represents:
» Objects that the system will use or manage
« Operations that act on those objects
« Relationships (including inheritance or aggregation)
« Collaborations between different classes
Key elements include:
o Classes, attributes, operations
+« CRC models
o Collaboration diagrams

+ Packages

8. Identifying Analysis Classes
To identify candidate classes from requirements:
» Perform a grammatical parse of scenarios (underline all nouns)

o Each noun may represent a potential class

34

SE

« Determine whether the noun belongs to:
o Solution space (used in implementation)

o Problem space (used in description only)

9. Manifestations of Analysis Classes

Analysis classes may take the form of:

Type Example
External Entities Users, hardware devices
Things Reports, signals, documents

Occurrences/Events Transactions, triggers
Roles Manager, customer, admin
Organizational Units Department, team

Places Factory floor, loading dock

Structures Sensor, vehicle, table

10. Criteria for Potential Classes

Criterion Description

Retained Information The class must retain data necessary for system operation

Needed Services It must support relevant operations (methods)
Multiple Attributes Must have more than one meaningful attribute
Common Attributes All instances share the same set of attributes

Common Operations Similar operations applicable to all instances

Essential Requirements Essential for communication between system and external entities

1. Defining Attributes
Attributes are assigned depending on the context of the class in the system.
Example:
« For a Sports Management System:
O name, battingAverage , fieldingPercentage
o For a Pension System:

o salary , pensionOption , vestingStatus

12. Defining Operations

Operations represent the behavior of a class. They are identified by parsing verbs from the requirements.

Four Categories:

1. Data Manipulation (add, update, delete)

2. Computation (calculate salary, total marks)
3. Inquiry (check status)

4. Event Monitoring (detect threshold breach, motion detection)

13. CRC Models (Class-Responsibility-Collaborator)

CRC (Class-Responsibility-Collaborator) modeling uses index cards to document:

« Class name

35

SE

+ Responsibilities (left side)

« Collaborators (right side)

This method helps visualize how classes interact and what responsibilities they carry.

14. Class Types
Type Purpose
Entity Class Represents core domain concepts (e.g., Sensor, FloorPlan)

Boundary Class Manages user interface (e.g., forms, reports)

Controller Class Coordinates operations, workflows, and communication between classes

15. Responsibilities
« Distribute responsibilities logically among classes
o Keep related data and behavior together
« Avoid scattering related data across multiple classes
» Responsibilities should be general and reusable

« Shared where needed across related classes

16. Collaborations
Classes fulfill their responsibilities either:

» Independently (using their own methods)

» Collaboratively (interacting with other classes)
Types of relationships:

o Is-part-of

* Has-knowledge-of

+ Depends-upon

17. Associations and Dependencies

Term Explanation

Association A structural relationship (e.g., student enrolls in courses)

Dependency A situation where one class relies on another to perform a task or supply data
18. Multiplicity

Specifies the number of instances that can be involved in a relationship:
« (1,1) - Exactly one
e (0,m) = Zero or many

¢ (1,n) > At least one

19. Analysis Packages

To organize a large model, related classes and use-cases are grouped into packages.

Visibility symbols:
e + - Public (accessible everywhere)

e - Private (not accessible outside the package)

36

SE

- Protected (accessible only to related packages)

Project Planning

Project Planning is an organized process from requirements gathering to testing and support.

Software Project Manager

Managing People

Act as a Project Leader
Contact with stakeholders

Managing human resources

Managing Projects

Defining and setting up project scope
Managing project management activities
Monitoring progress and performance
Risk analysis

Take necessary step to avoid or come out of problems

Project Planning Process

1.

2
3
4.
5

o

Identify Stakeholders Need: meet the expectations of stakeholders

. ldentify Project Objectives: specific, measurable, achievable objectives

. Deliverable and due dates: fixed date and time that an objective is due, deliverables = products, service or result

Project Schedules: project start and end date

. Provide Roles and Responsibilities: effective communication, who is involved and their task, understand expected

objective

. ldentify Project budget: anticipating budget cost, monitoring budget
. Identify Communication Plan: effective communicate with client, team and others

. Provide tracking and management: deliver project on time and organize task, track productivity and growth of

project

Resource used in Project Management

1.
2.
3.

Human
Reusable Components

Hardware and Software tools

Project Scope Management

Scope = set of deliverables or features of a project

Scope management = creates boundaries of the project by clearly defining what would be done and what not

Steps

37

SE

1. Plan Scope Managements : documentarian and guidelines of project scope, product scope, project life, how to
define, validate and control.

2. Collect Requirements: collect requirements from all stakeholders
3. Defining Scope: identifying project objectives, goals, tasks, budget, resources, schedule, expectation

4. Create WBS: Work Breakdown Structure = subdividing project deliverables into smaller units, break down into
phases, including priority task

5. Validate Scope: focuses on mainly customer acceptance, customer gives feedback

6. Control Scope: monitoring the status of the project and managing changes

WBS : Work Breakdown Structure
A top-down hierarchical decomposition of the total project scope into manageable sections.
Working of WBS Steps
1. Project managers decide project name at top
2. Project managers identifies the main deliverables of the project
3. These main deliverables are broke down into smaller higher-level tasks
4. Process is done recursively to produce much smaller independent task
5. Choose task owner. they need to get the job down
Components
. WBS Dictionary: Document that defines the various wbs element
. WBS levels: determines the hierarchy level of a wbs elemet
. Task : main deliverable tasks
. Sub tasks: devided tasks

. Control account : group work packages and measure their status

o o b~ WO N P

. project deliverables: desired outcome of project tasks and work package

Project Scheduling
| Definition: The process of converting a project plan into an operating timetable.

Project scheduling is responsible activity of project manager.
Process:

1. Identify all the functins required

2. \Break down large function into smaller activites , wbs

3. Determine the dependency among various activities

4. Allocate resources to activities

5. Assign people to conduct different activities

6. Plan the beginning and ending dates for different activities
7

. Create activity network and bar or gratt chart

Techniques:
1. CPM:

The Critical Path Method (CPM), also known as Critical Path Analysis (CPA), is a project management technique
that identifies the longest sequence of tasks (the critical path) that must be completed on time to finish the

38

project, highlighting tasks that directly impact the project's timeline.
- Do LIl U,amﬂaxc e 1 ey u\rpuJuv v '-‘-'--1] R)

ﬂch\n-h] Predecersose Duvabion (in wonths) a) AC SE=F

A = Z b A-=8- D-F
B 2 g Q) Ro8>ESF
g A ‘ d) A5C=>D>F
t c 3 %—‘ﬁ /65
F D E 4 p Ol 7z

k= o’ Q7

2. Program Evaluation and Review Technique (PERT):

« It is a way to schedule flow of tasks in a project and estimate total time taken to complete it.

* PERT charts offer a visual representation of the major activities (and dependencies) in a project
It calculate:

* Optimistic time (O): Quickest time you can complete a project

* Pessimistic time (P): Longest time it’1l take to complete your project

* Most likely time (M): How long it’1l take to finish your project if there are no problems.

* (O+4M +P)/6

i~ Dummy Activity

3. Gantt Chart:
* A Gantt chart is a type of bar graph that project managers use for planning and scheduling in
complex project.

* It represent each task horizontally on a bar chart, which shows the start and end dates & they
frequently include deadlines & dependencies of tasks.

* It easier to visualize the progress of a project and see how different tasks interact with one

another.
16 23 30 Sep6 13 20 27 Oct4 11 18 25 Novi 8 15 2.2
e e
ene spectcat =

Overall Archiecture] |
Project Planning| ||
Detail Design |]

Sotre Developmen] e

Test Plan)|

Testing and Q4|
User Documentation|

4. Task List:

¢ One of the simplest project scheduling techniques is the creation of a task list.

* Create task list using a word processor or spreadsheet software.

« It create a list of tasks and include important information like the task manager, start date,
deadline & completion status.

Tsert new rows abowe s one.

5. Fast Tracking :

* In Fast Tracking, Project is being implemented by either simultaneously executing many tasks
or by overlapping many tasks to each other.

* Example: In software development project, designing and development can be taken up in
parallel. Once design of essential features is ready and approved, development team can work
on it. Meanwhile, the designing team will work on the remaining elements and functions.

6. Crashing:

* Crashing deals with involving more resources to finish the project on time.
* Example: Add more developer in project, Paying overtime to employee, - ' 2

* Crashing can only be applied when it fits your project budget.

Lecture 10: Risk Management in Software Projects

Introduction

Risk management is a critical component of software project planning, aimed at identifying, analyzing, and controlling
risks to ensure project success. A risk is an uncertain future event with a probability of occurrence and potential for
loss, impacting time, budget, performance, or project outcomes.

Sources of Risk

Risks in software projects arise from various sources, including:

Misunderstanding Customer Requirements: Incorrect or unclear interpretation of client needs.
Uncontrolled Requirement Changes: Frequent or poorly managed changes to requirements.
Unrealistic Promises: Overcommitting to clients beyond project capabilities.

Misjudging New Methodologies: Overestimating the benefits or underestimating the challenges of new tools or
processes.

Poor Software Design: Underestimating the robustness or extensibility of the design.
Team Effectiveness Miscalculation: Overestimating team collaboration or productivity.

Inaccurate Budget Estimation: Underestimating costs or resources needed.

Risk Identification

Risk identification involves detecting potential risks early to minimize their impact. Techniques include:

SE

Brainstorming: Collaborative sessions to identify potential risks.

40

SWOT Analysis: Evaluating strengths, weaknesses, opportunities, and threats.
Causal Mapping: Mapping cause-and-effect relationships to uncover risks.

Flowcharting: Visualizing processes to identify risk points.

Types of Risks

o o B~ W ON P

. Technology Risks: Issues with hardware or software used in development.

. People Risks: Challenges related to team members, such as turnover or skill gaps.
. Organizational Risks: Problems stemming from the organizational environment.

. Tools Risks: Issues with development tools or support software.

. Requirement Risks: Risks from changing or mismanaged customer requirements.

. Estimation Risks: Errors in estimating resources, time, or costs.

Risk Analysis and Prioritization

Risk analysis assesses identified risks by:

1.
2.
3.

Identifying Problems: Determining the root causes of risks.
Estimating Probability: Calculating the likelihood of occurrence.

Assessing Impact: Evaluating the potential effect on the project.

Probability Categories

Very Low (0-10%): Tolerable risk with no significant harm.
Low (10-25%): Minor effect on the project.

Moderate (25-50%): Impacts project timeline.

High (50-75%): Affects timeline and budget.

Very High (>75%): Severe impact on output, time, budget, and performance.

Risk Control

Risk control involves planning, monitoring, and resolving risks to achieve desired project outcomes.

1. Risk Planning

Risk planning develops strategies to mitigate significant risks. Methods include:

Avoid the Risk: Modify requirements, reduce scope, or offer incentives to retain staff.
Transfer the Risk: Outsource risky components or purchase insurance.

Reduce the Risk: Plan for potential losses, such as recruiting additional staff to cover turnover.

2. Risk Monitoring

Risk monitoring is an ongoing process to track project progress and evaluate risks:

Continuously assess assumptions about risks.
Identify changes in risk probability or impact.

Take corrective actions as needed to keep risks under control.

3. Risk Resolution

Risk resolution ensures risks are managed within acceptable levels:

SE

Depends on accurate risk identification, analysis, and planning.
Requires prompt and effective responses to emerging issues.

Keeps the project on track by addressing risks as they arise.

41

SE

RMMM Plan

The Risk Mitigation, Monitoring, and Management (RMMM) Plan is a structured approach integrated into the overall
project plan. It documents risks using a Risk Information Sheet (RIS), which includes:

« Risk ID, date, probability, impact, description, avoidance strategies, monitoring actions, management plan, and
current status.

* Managed via a database for easy creation, prioritization, searching, and analysis.

Example: Late Project Delivery
Risk: Project delivery exceeds the deadline.
1. Mitigation:
« Estimate development time as 20 days but quote 30 days to the client for buffer.
« Implement precautionary measures before development starts.
2. Monitoring:
« Create a project schedule with clear start and end dates.
o Track progress within the 20-30-day window.
3. Management:

« If the deadline is missed, negotiate with the client for extra time or offer additional features to maintain
satisfaction.

Risk Mitigation

Risk mitigation is a proactive approach to avoid risks before they occur. Steps include:
1. Communicate with staff to identify potential risks.

2. Eliminate causes of risks (e.g., unclear requirements).

3. Develop policies to ensure project continuity.

4. Regularly review and control project documents.

5

. Conduct timely reviews to accelerate progress.

Risk Management
Risk management is a reactive approach applied after risks materialize:
» Assumes mitigation efforts failed, and the risk has occurred.
« Handled by the project manager to resolve issues.
« Effective mitigation simplifies management (e.g., sufficient staff, clear documentation, and shared knowledge ease
onboarding of new team members).
Example Scenario
Risk: High staff turnover.

» Mitigation Success: Sufficient additional staff, comprehensive documentation, and shared knowledge ensure new
employees can quickly adapt.

« Management: Project manager leverages these resources to maintain development continuity.

Drawbacks of RMMM

While effective, the RMMM approach has limitations:
« Additional Costs: Implementing RMMM increases project expenses.
« Time-Intensive: Requires significant time for planning and execution.
» Complex for Large Projects: RMMM can become a project in itself.

+ No Guarantee: Risks may still emerge post-delivery, and RMMM does not ensure a risk-free project.

42

SE

Conclusion

Effective risk management in software projects involves identifying, analyzing, and controlling risks through proactive
mitigation and reactive management. The RMMM Plan provides a structured framework to document and address risks,
but it requires careful planning and resources. By understanding risk sources, types, and control strategies, project
managers can enhance the likelihood of successful project outcomes.

Lecture 11: Design Concepts

Introduction
Software design is the process of transforming user requirements into a form suitable for coding and implementation.
As the first step in the Software Development Life Cycle (SDLC), it shifts focus from the problem domain to the solution
domain, specifying how to fulfill requirements outlined in the Software Requirements Specification (SRS). Software
design is typically performed by software design engineers or Ul/UX designers.
Mitch Kapor's Software Design Manifesto
Mitch Kapor, creator of Lotus 1-2-3, emphasized three qualities of good software design:

« Firmness: The software should be free of bugs that impair functionality.

« Commodity: The software should meet its intended purpose.

» Delight: The user experience should be pleasurable.

Objectives of Software Design
A well-designed software system should achieve:
» Correctness: Accurately meet the specified requirements.
« Completeness: Include all necessary components, such as data structures, modules, and interfaces.
« Efficiency: Optimize resource usage.
« Flexibility: Adapt to changing needs.
« Consistency: Maintain uniformity across the design.

» Maintainability: Be simple enough for other designers to maintain.

Software Quality Attributes (FURPS)

The FURPS model defines key quality attributes for software design:
» Functionality: Evaluates the feature set, capabilities, generality of functions, and system security.
o Usability: Considers human factors, aesthetics, consistency, and documentation.

« Reliability: Measures failure frequency, output accuracy, mean-time-to-failure (MTTF), recovery ability, and
predictability.

» Performance: Assesses processing speed, response time, resource consumption, throughput, and efficiency.

» Supportability: Encompasses extensibility, adaptability, serviceability, testability, compatibility, configurability, ease
of installation, and problem localization (collectively contributing to maintainability).

Software Quality Guidelines
To ensure high-quality design, the following guidelines should be followed:
» Use recognizable architectural styles or patterns and components with good design characteristics.

« Enable evolutionary implementation, allowing incremental development (though smaller systems may use linear
design).

43

SE

« Ensure modularity by logically partitioning software into elements or subsystems.

« Provide distinct representations of data, architecture, interfaces, and components.

» Select data structures based on recognizable patterns suitable for implementation.

» Design components with independent functional characteristics.

» Create interfaces that reduce complexity between components and external systems.
« Derive the design using a repeatable method driven by requirements analysis.

« Represent the design with notation that clearly communicates its meaning.

Software Design Process

The software design process translates the analysis model (requirements) into a design model (solution) and consists
of three levels:

1. Interface Design:
« Focuses on interactions between the system and users/devices.
« Uses scenario-based and behavioral diagrams (e.g., use case diagrams).
« Does not address internal structure.
2. Architectural Design:
« Defines major system components, their responsibilities, properties, interfaces, and interactions.
* Uses class-based and flow-based diagrams (e.g., class diagrams, data flow diagrams).
3. Detailed Design:

« Specifies internal elements of major components, including properties, relationships, processing, algorithms,
and data structures.

The design must:
« Implement all explicit and implicit requirements from the analysis model.
» Be areadable, understandable guide for coders, testers, and support teams.

» Provide a complete picture of the software, addressing data, functional, and behavioral domains from an
implementation perspective.

Fundamental Design Concepts

Software design concepts provide the principles and logic behind creating effective software designs. These concepts
form a supporting structure for development.

1. Abstraction

Abstraction hides unnecessary implementation details, showing only essential information to users.

* Procedural Abstraction: Divides subprograms into hidden and visible groups of functionalities (e.g., a function like
open() hides the details of the enter algorithm).

» Data Abstraction: Represents data objects while hiding manipulation details (e.g., a stack’s Push(), Pop(), Top(),
and Empty() methods hide internal data structure implementation).

« Example: A door object might expose attributes like manufacturer, model, type, and swing direction while hiding

internal data structures.

2. Architecture
Architecture defines the overall structure of program modules and their interactions, providing conceptual integrity.

o Structural Properties: Defines components (e.g., modules, objects) and their interactions (e.g., method
invocations).

« Extra-Functional Properties: Addresses performance, capacity, reliability, security, and adaptability requirements.

+ Families of Systems: Leverages reusable architectural patterns for similar systems.

« Reference: Shaw and Garlan [SHA95a].

3. Design Patterns
Design patterns are reusable solutions to common design problems.
« Pattern Template:
o Name: A concise, expressive name.
o Intent: Describes the pattern’s purpose.
o Also-Known-As: Lists synonyms.
o Motivation: Provides a problem example.
o Applicability: Specifies relevant design situations.
o Structure: Describes required classes.
o Participants: Outlines class responsibilities.
o Collaborations: Details participant interactions.
o Consequences: Discusses trade-offs and design forces.

o Related Patterns: References related patterns.

4. Separation of Concerns
Separation of concerns divides complex problems into smaller, independently solvable pieces.
» Each concern represents a feature or behavior from the requirements model.

» Reduces effort and time by making problems more manageable.

5. Modularity
Modularity divides a system into smaller, manageable parts (modules) to reduce complexity.
» Modules are integrated to meet software requirements.

« Benefits: Makes software intellectually manageable, reduces development costs, and improves understanding
[Mye78].

« Contrast: Monolithic software (single module) is difficult to understand due to numerous control paths, variables,
and complexity.
6. Information Hiding
Information hiding ensures modules only share necessary information, hiding internal data structures and algorithms.
« Benefits:
o Reduces side effects.
o Limits the global impact of local design decisions.
o Encourages controlled interfaces.
o Discourages global data usage.

o Promotes encapsulation, enhancing design quality.

7. Functional Independence

Functional independence is achieved through modules with single-minded functions and minimal interaction (low
coupling, high cohesion).

» Cohesion: The degree to which a module performs a single task with little interaction with others (high cohesion is
desirable).

« Coupling: The degree of interdependence between modules (low coupling is desirable).
« Benefits of High Cohesion and Low Coupling:

o Readability: Modules are easier to understand.

SE

o Maintainability: Changes in one module have minimal impact on others.
o Modularity: Simplifies module development.

o Scalability: Facilitates adding or removing modules.

o Testability: Simplifies testing and debugging.

o Reusability: Modules can be reused in other systems.

o Reliability: Improves overall system quality.

8. Refinement

Refinement is a top-down approach that elaborates procedural details hierarchically until programming language
statements are reached.

» Example: The task "open door" is refined into steps like “walk to door,” “reach for knob,” “turn knob clockwise,” and

so on, until all details are specified.

9. Aspects
Aspects represent cross-cutting concerns—requirements that affect multiple parts of the design.
« Definition: Requirement A cross-cuts requirement B if B cannot be satisfied without considering A [Ros04].
« Example: In the SafeHomeAssured.com WebApp:
o Requirement A: Access camera surveillance via the internet.
o Requirement B: Validate registered users before access.
o B cross-cuts A because user validation (B) must be implemented across all functions, including camera access

(A).

10. Refactoring
Refactoring improves a software system'’s internal structure without altering its external behavior [FOW99].

* Purpose: Eliminates redundancy, unused elements, inefficient algorithms, or inappropriate data structures to
enhance design quality.

Object-Oriented (OO) Design Concepts
OO0 design leverages principles to create flexible, reusable designs:
« Design Classes:
o Entity Classes: Refined from analysis classes to represent data and behavior.
o Boundary Classes: Manage user interfaces (e.g., screens, reports) and represent entity objects to users.

o Controller Classes: Handle creation/update of entity objects, instantiation of boundary objects, complex
communication, and data validation.

« Inheritance: Subclasses inherit all responsibilities of their superclass.
+ Messages: Stimulate behavior in receiving objects.

» Polymorphism: Allows objects to be treated as instances of their parent class, reducing effort to extend designs.

Designh Model Elements
The design model transforms the analysis model into a detailed implementation plan, encompassing:
1. Data Elements:
« Data structures derived from the data model.
« Database architecture for persistent storage.
2. Architectural Elements:
« Derived from the application domain, analysis classes, and architectural patterns/styles [Sha96].

« Define relationships, collaborations, and behaviors for design realizations.

46

3. Interface Elements:

« User interfaces (Ul).

« External interfaces to other systems, devices, or networks.

« Internal interfaces between design components.
4. Component Elements:

« Detailed specifications of software components, including algorithms and processing logic.
5. Deployment Elements:

« Define how software components are deployed across hardware or network environments.

Conclusion

Software design bridges user requirements and implementation, ensuring correctness, efficiency, and maintainability.
By adhering to quality guidelines, leveraging fundamental concepts (e.g., abstraction, modularity, functional
independence), and applying OO principles, designers create robust, scalable systems. The design process—interface,
architectural, and detailed design—transforms analysis models into actionable plans, supported by a comprehensive
design model.

Reference
Pressman, R. S. (2010). Software Engineering: A Practitioner’s Approach, 7th Edition. McGraw-Hill.

Lecture 11: Software Project Management and Scheduling

Introduction

Software project management involves planning, organizing, and controlling resources to deliver a software product
that meets customer requirements within time and budget constraints. Effective project management focuses on
scheduling, cost estimation, and risk management to ensure project success. This guide covers key concepts,
techniques, and models for managing and scheduling software projects, optimized for exam preparation.

Project Management Spectrum

Effective software project management revolves around four key components, known as the Four P’s:

1. People
+ Importance: Human resources are the most critical factor in project success.
» Selection: Choose individuals with the right skills and talents.
* Roles and Responsibilities:
o Senior Manager: Defines business issues and influences the project.

o Project Manager: Plans, motivates, organizes, and controls project activities; possesses problem-solving and
team management skills.

o Software Engineer: Delivers technical expertise.
o Customer: Specifies requirements.

o End Users: Interact with the final software product.

2. Product
« Definition: The software product is the ultimate deliverable of the project.
« Planning Requirements:

o Establish objectives and scope.

SE

o Identify alternative solutions.
o Define technical and management constraints.

« Importance: Accurate product definition enables realistic cost estimation, risk identification, and scheduling.

3. Process
» Definition: A methodology that outlines steps to complete the project as per requirements.

« Importance: A clear process ensures team members know their tasks and timelines, increasing the likelihood of
meeting project goals.

* Phases:
o Documentation
o Designing
o Implementation
o Software Configuration Management
o Deployment

o Interaction

4. Project
« Definition: Encompasses requirement analysis, development, delivery, maintenance, and updates.
* Project Manager's Role:
o Guides the team to achieve objectives.
o Resolves issues, monitors costs, and ensures adherence to deadlines.

o Manages activities to prevent project failure.

Boehm's W5HH Principle

Barry Boehm's W5HH (Why, What, When, Who, Where, How, How Much) principle provides a framework for efficient
project management by answering key questions:

1. Why is the system being developed?
« |dentifies business reasons and problem statements to justify the project’s cost and time.
2. What activities are needed?
« Defines key tasks required by the customer to establish a project schedule.
3. When will it be completed?
« Specifies start and end dates for tasks to meet project goals.
4. Who is responsible for each activity?
« Assigns roles and responsibilities to team members.
5. Where are they organizationally located?
« Clarifies that responsibilities may extend beyond the software team to customers, users, and stakeholders.
6. How will the job be done technically and managerially?
« Defines technical and management strategies once the product scope is established.
7. How much of each resource is needed?

« Estimates resources required to complete the project within budget and requirements.

Software Measurements and Metrics

Software measurements and metrics quantify attributes of the software product or process to aid decision-making and
project success.

Software Measurements
« Definition: Indicators of size, quantity, or dimension of a product or process attribute.
« Categories:
o Direct Measures: Cost, effort, lines of code (LOC), execution speed, error count.

o Indirect Measures: Functionality, quality, complexity, reliability, maintainability.

Software Metrics
« Definition: Formulas or measures for software process and product aspects (e.g., performance, productivity).
o Categories:
o Product Metrics: Measure size, complexity, quality, and reliability.
o Process Metrics: Measure fault rates, testing defect patterns, and operation times.

o Project Metrics: Measure developer count, cost, scheduling, and productivity.
Principles of Software Measurement
. Formulation: Derive appropriate measures and metrics.
. Collection: Gather data to compute metrics.

1

2

3. Analysis: Apply mathematical tools to compute metrics.

4. Interpretation: Evaluate metrics to gain insights into quality.
5

. Feedback: Provide recommendations to the software team based on metric analysis.

Size Metrics

Size metrics estimate the software's size, critical for cost and effort estimation.

1. Lines of Code (LOC)
» Definition: Counts executable code lines, excluding comments and blank lines.
« Use: Estimates program size and compares programmer productivity.

« Example:

//Import header file
#include <iostream>
int main() {
int num = 10;
//Logic of even number
if (num % 2 ==0) {
cout << "It is even number";

}

return O;

o Total LOC = 9 (executable lines only).
+ Advantages:

o Widely used for cost estimation.

o Easy to estimate efforts.
« Disadvantages:

o Cannot measure specification size.

o Poor design may inflate LOC.

o Language-dependent.

o Difficult for users to understand.

SE

+ Example Table:

Project LOC Cost (SR) Efforts (Persons/Month) Documents Errors
A 10,000 110 18 365 39
B 12,000 115 20 370 45
C 15,400 130 25 400 32

2. Function Points (FP)

» Definition: Measures functionality by counting functions in the application.

e Attributes:
o External Inputs (El): Input screens, tables.
o External Outputs (EO): Output screens, reports.
o External Inquiries (EQ): Prompts, interrupts.
o Internal Logical Files (ILF): Databases, directories.
o External Interface Files (EIF): Shared databases, routines.

« Calculation:
o Count each attribute, assign weights, and compute Unadjusted Function Count (UFC).

o Apply Complexity Adjustment Factor (CAF) to get FP.

+ Example:
Information Domain Optimistic Likely Pessimistic Est. Count Weight FP Count
of Inputs 22 26 30 26 4 104
of Outputs 16 18 20 18 5 90
of Inquiries 16 21 26 21 4 84
of Files 4 5 6 5 10 50
of External
Interfaces ! 2 3 2 7 14
UFC 342
CAF 117
EP 400

« Advantages:
o Requires detailed specifications.
o Not restricted to code.
o Language-independent.
» Disadvantages:
o Ignores quality issues.

o Subijective counting relies on estimation.

Software Project Estimation
Software project estimation predicts the time, effort, and cost required to complete a project, critical for preventing
project failure.
Responsible Persons
» Software Manager
« Cognizant Engineers

o Software Estimators

SE

Factors Affecting Estimation
. Cost: Ensure sufficient funds to avoid project failure.
. Time: Estimate overall duration and task timings to manage client expectations.

1

2

3. Size and Scope: Identify all tasks to ensure adequate materials and expertise.

4. Risk: Predict potential events and their severity to create risk management plans.
5

. Resources: Ensure availability of tools, people, hardware, and software.

Steps of Project Estimation
1. Estimate Project Size:
e Use LOC or FP, based on customer requirements, SRS, and system design documents.
« Methods: Estimation by analogy (past projects) or dividing the system into subsystems.
2. Estimate Efforts:
o Calculate person-hours or person-months for activities (design, coding, testing, documentation).
¢ Methods:
o Use historical organizational data for similar projects.
o Apply algorithmic models (e.g., COCOMO) for unique projects.
3. Estimate Project Schedule:
« Define the Work Breakdown Structure (WBS) to assign tasks, start/end dates, and team members.

« Convert efforts to calendar months using:Schedule (months) = 3.0 * (man-months)*(1/3)(The constant 3.0
varies by organization).

4. Estimate Project Cost:

« Include labor costs (effort hours * labor rate) and other expenses (hardware, software, travel, training, office
space).

« Use specific labor rates for different roles for accuracy.

Decomposition Techniques

Decomposition techniques break down the project into manageable parts for accurate estimation.

1. Software Sizing
o Challenge: Accurately estimate the product size.
» Factors for Accuracy:
o Correct size estimation.
o Translation of size into effort, time, and cost.
o Reflection of team abilities in the plan.
o Stability of requirements and environment.

« Approaches:

o

Fuzzy Logic Sizing: Uses application type and historical data.

o

Function Point Sizing: Estimates based on information domain characteristics.

o

Standard Component Sizing: Estimates size of subsystems, modules, or screens using historical data.

o

Change Sizing: Estimates modifications to existing software (reuse, add, change, delete code).

2. Problem-Based Estimation
* Method: Uses LOC or FP to size software elements and project costs/efforts.

* Steps:

SE

51

SE

o Size each element using LOC or FP.
o Use historical data to project costs and efforts.

o Compute expected value:S = (S_opt + 4S_m + S_pess) / 6(S = size, S_opt = optimistic, S_m = most likely,
S_pess = pessimistic).

Example:

Function Estimated LOC
User Interface (UICF) 2,300
2D Geometric Analysis 5,300
3D Geometric Analysis 6,800

Database Management 3,350

Graphics Display 4,950
Peripheral Control 2,100
Design Analysis 8,400
Total 33,200

3. Process-Based Estimation

Method: Decomposes the process into tasks and estimates effort for each.
Steps:

o Identify software functions and process activities.

o Estimate effort (person-months) for each activity per function.

o Apply labor rates to calculate costs (senior staff may have higher rates).

Importance: Ensures detailed task-level estimation for accuracy.

Software Cost Estimation

Software cost estimation predicts the approximate cost before development begins, considering multiple factors.

Factors for Project Budgeting

Specification and scope
Location

Duration

Team efforts

Resources

Tools and Techniques

1.

2.

3.

Expert Judgment:

« Leverages experienced professionals’ insights for similar projects.
Analogous Estimation:

o Uses historical data from similar projects (scope, budget, size).

« Cost-effective but less accurate, used in early phases.
Parametric Estimation:

« Uses statistical models to estimate man-hours based on past project data.

4. Bottom-Up Estimation:

« Divides project into work packages (WBS), estimates each, and sums for total cost.

« Time-consuming but highly accurate.

5. Three-Point Estimation (PERT):

52

« Uses optimistic, most likely, and pessimistic estimates to handle uncertainties.
6. Reserve Analysis:

« Allocates reserve budget for unforeseen events, approved by sponsors.
7. Cost of Quality:

« Includes costs to prevent and address failures during and after the project.
8. Vendor Bid Analysis:

+« Compares multiple vendor bids to estimate project cost.

Typical Problems

. Complexity: Large projects are hard to estimate accurately, especially early on.
. Inexperience: Estimators may lack sufficient experience.

. Bias: Tendency to underestimate, especially by senior professionals.

. Oversights: Forgetting integration and testing costs in large projects.

a b~ W N P

. Management Pressure: Demanding precise estimates for bids or funding.

COCOMO Model
The Constructive Cost Model (COCOMO), developed by Barry Boehm in 1981, estimates effort, cost, and schedule
based on software size (KLOC).
Software Project Types
1. Organic:
e Small, simple projects (2-50 KLOC).
« Small, experienced team; well-understood problem.
« Examples: Simple inventory or data processing systems.
2. Semidetached:
¢ Medium-sized projects (50-300 KLOC) with mixed requirements.
* Mixed team experience; some known/unknown modules.
« Examples: Database management, complex inventory systems.
3. Embedded:
« Large, complex projects (>300 KLOC) with fixed requirements.
« Large team, often less experienced; high complexity.

+ Examples: ATMs, air traffic control, banking software.

Types of COCOMO Models
1. Basic COCOMO:
« Static model for quick, rough estimates based on KLOC.
+ Formulas:
o Effort (E) = a * (KLOC)*b Man-Months (MM)
o Scheduled Time (D) = ¢ * (E)*d Months

+ Constants:

Project Type a b c d
Organic 2.4 1.05 2.5 0.38
Semidetached 3.0 112 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

« Example (Semidetached, 300 KLOC):
o E=23.0*(300)".12 =1784.42 MM
o D =2.5*(1784.42)"0.35 = 34.35 Months
o Persons =E /D =1784.42 [34.35 = 52
2. Intermediate COCOMO:
« Enhances accuracy by including cost drivers (product, hardware, resource, project parameters).
+ Formulas:
o Effort (E) = a * (KLOC)"b * EAF MM
o Scheduled Time (D) = ¢ * (E)*d Months
« Effort Adjustment Factor (EAF): Product of cost driver values (ideal = 1).

« Example (Semidetached, 300 KLOC, very high application experience = 0.82, very low programming
experience = 1.14):

o EAF =0.82 %114 = 0.9348
o E=3.0*(300)"1.12 * 0.9348 = 1668.07 MM
o D =2.5*(1668.07)"0.35 = 33.55 Months

3. Detailed COCOMO:

« Applies Basic/Intermediate COCOMO to each software engineering phase (planning, system design, detailed
design, coding/testing, integration, cost model).

« Divides software into modules, estimates effort per module, and sums for total effort.
o Example (Distributed MIS System):

o Database (Semidetached)

o GUI (Organic)

o Communication (Embedded)

o Estimate costs separately and sum for total cost.

Advantages of COCOMO
» Systematic estimation at different development stages.
« l|dentifies key cost and effort factors.
« Leverages historical project data.

« Easy to implement with various factors.

Disadvantages of COCOMO
« Ignores requirements, customer skills, and hardware issues.
« Limits accuracy due to assumptions and averages.
* Heavily time-dependent.

« Assumes size (KLOC) is the primary cost driver, which may not always apply.

Conclusion

Software project management and scheduling require careful planning of people, product, process, and project
activities. Boehm'’s W5HH principle guides objective setting, while measurements and metrics (LOC, FP) quantify
progress. Estimation techniques (decomposition, COCOMO) predict time, effort, and cost, addressing risks and
resource needs. Understanding these concepts ensures effective project execution and is critical for exam success.

SE

54

SE

Lecture 12 : Software Testing

Introduction

Software testing is a critical process in software development to ensure a product meets customer requirements, is
defect-free, and performs reliably. It identifies errors, gaps, or missing requirements by evaluating attributes like
reliability, scalability, portability, reusability, and usability. This guide covers software testing principles, test cases,
white box and black box testing, unit testing, integration testing, and comparisons, optimized for exam preparation.

Software Testing Overview
« Definition: A method to verify that a software product matches expected requirements and is free of defects.
¢ Purpose:
o |dentify errors, gaps, or missing requirements.
o Ensure the product meets customer needs and performs reliably.
o Prevent failures that could lead to dangerous situations.
« Importance: Mandatory to avoid deploying faulty software to end users.
* Process:
o Conducted at every phase of the Software Development Life Cycle (SDLC).

o Performed by software testers, developers, project managers, and end users.

Principles of Software Testing
The following principles guide effective software testing:
1. Testing Shows the Presence of Defects:
« Aims to identify defects that could cause product failure.
« Cannot guarantee 100% error-free software but reduces undiscovered defects.
* Requires well-designed test cases to maximize defect detection.
2. Exhaustive Testing is Impossible:
« Testing all modules and features exhaustively is impractical.
« Use risk analysis and prioritize critical modules to deliver on schedule.
3. Early Testing:
« Involve testers from the requirement gathering phase to understand the product deeply.
« Early defect detection saves time and cost compared to late-stage fixes.
4. Defect Clustering:
« Most defects (80%) are found in a small portion (20%) of code (Pareto's 80-20 Rule).
« Focusing on high-defect areas may miss bugs in other modules.
5. Pesticide Paradox:
* Repeated use of the same test cases fails to uncover new defects.
« Regularly update test cases to cover different software parts and find new bugs.
6. Testing is Context-Dependent:
« Testing varies by project type (e.g., e-commerce, banking, commercial websites).
« Different products require tailored test cases based on their features and requirements.
7. Absence of Errors Fallacy:

« A bug-free application may still be unusable if it fails to meet user needs.

55

Testing must ensure both defect-free code and alignment with client requirements.

Test Cases

» Definition: A set of actions or conditions to compare expected and actual results, verifying software functionality

against customer requirements.

« Components:

o

o

o

o

Test Scenario ID: Identifies the test scenario (e.g., Login-1).
Test Case ID: Unique identifier for the test case (e.g., Login-1A).
Description: Details the test purpose (e.g., positive login test).
Priority: Importance level (e.g., High).

Pre-Requisite: Conditions required (e.g., valid user account).
Post-Requisite: Actions after testing (e.g., none).

Execution Steps: Actions, inputs, expected outputs, actual outputs, browser, and result.

« Example (Login Test Case):

. Expected
S.No Action Inputs Actual Output Browser
Output
Launch Facebook Facebook
1 L https://www.facebook.com/ IE-1
application home home
Enter email &

Email: test@xyz.com,

password, hit
Password

login

Login success Login success |E-1

White Box Testing

» Definition: Testing that analyzes the internal code structure, design, and functionality, requiring knowledge of
the software's programming.

« Also Known As: Clear box, open box, transparent box, code-based, or glass box testing.

« Performed By: Software developers.

« Testing Levels: Unit testing and integration testing.

* Tools: EclEmma, NUnit, PyUnit, HtmlUnit, CppUnit.

o Verification Areas:

o

o

Internal code security.

Poorly structured code paths.

Input flow through code.

Loops, decision conditions, and statements.
Individual functions and modules.

Expected outputs.

Techniques

1. Path Coverage/Testing:

Tests all possible paths from entry to exit based on the program’s control flow.

Example: FunctionsA>B—>C->D>E->F->H->1

2. Loop Testing:

SE

Verifies simple, nested, and concatenated loops (e.g., while, for, do-while).
Checks loop conditions and termination.

Example: while (condition) { statement(s); } .

Result

Pass

Pass

56

https://www.facebook.com/
mailto:test@xyz.com

SE

3.

Branch Coverage/Condition Testing:
« Tests logical conditions (true/false) for if and else branches.

« Ensures all decision points are covered.

4. Statement Coverage:

« Executes every code statement at least once to verify functionality.

o Example:

Prints(int a, int b) {
intresult =a + b;
if (result > 0)
Print("Positive", result);
else
Print("Negative", result);

o Tests ensure lines 1-6 are executed.

Advantages

Optimizes code by identifying hidden errors.
Easily automated test cases.
Early error detection improves code quality.

Covers most code paths.

Disadvantages

Complex, expensive, and time-consuming.
Requires skilled programmers.
Cannot detect missing functionalities.

Code redesign requires rewriting test cases.

Black Box Testing

Definition: Testing functionalities without knowledge of internal code structure, focusing on inputs and outputs.
Also Known As: Behavioral, functional, or closed box testing.
Performed By: Software testers.
Testing Levels: System and acceptance testing.
Tools: QTP, Selenium, LoadRunner, JMeter.
Types:
o Functional Testing: Tests features and functionalities.
o Non-Functional Testing: Tests performance, usability, scalability, etc.

o Regression Testing: Ensures new changes do not affect existing functionalities.

Techniques

1.

2.

Equivalence Partitioning:

« Divides input values into classes with similar outcomes.

« Tests one value per class to reduce test cases.

o Example: Age (18-60) -> Invalid: =17, Valid: 18-60, Invalid: 261.
Boundary Value Analysis (BVA):

« Tests boundary values (upper/lower limits) of input ranges.

57

SE

« Example: Age (18-60) - Test: 17 (invalid), 18, 19, 59, 60 (valid), 61 (invalid).

3. Decision Table Testing:
« Captures input combinations and system behavior in a table.

o Example (Gmail Login):

Email (C1) Password (C2) Expected Result
True True Account Page

True False Incorrect password
False True Incorrect email
False False Incorrect email

4. Error Guessing:

o Uses tester experience to identify problematic areas.

« Examples: Divide by zero, null values, empty submit, invalid file uploads.

5. State Transition Testing:

« Tests behavior for different inputs to the same function.

o Example: Limited login attempts (e.g., lock account after 3 failed tries).
6. All Pairs Testing:

« Tests discrete combinations of inputs (e.g., checkboxes, radio buttons).

« Reduces test cases for combinatorial inputs.

Advantages
* No programming knowledge required.
» Efficient for large systems.
o Tests from the user's perspective.

« Identifies specification ambiguities.

Disadvantages
« Difficult to design test cases without code knowledge.
« Cannot detect control structure errors.

« Exhaustive input testing is time-consuming.

Black Box vs. White Box Testing

58

Blaok Bor. Jm-/.la_ Whils, Bez %
C’jnw. sdoomal o cleore o PR L dordor
and n,ncrrk!‘ﬂd_ of Yho .
baﬂmné, 1B Unbno wn
Jo e -I:IALy'L- . -
@ Know ah clopecl- Box' @ Open. box —[g,-}_l'n&/ coole,
—H‘h}ﬂna» llr—unc"vﬁi\ql 4 s el Jeh 41'»1& S.‘fﬂﬂﬂ,lq_nqjl
lortig Bhaunoral dorhing: ‘
43&40\6_
@ P?/'HDC’W"-GO(by @ oh\.’lZ—lDPeth
Sofusase. torder i
7) regunzed levs -
C e hvhlfﬂﬁ Knﬂﬁ"?"é cohPJe-)la pe BT \
& Lop Hie- aan):umﬁa_ e
@ wesl fon fulfr',!/(cheok code ‘LH!’VL.’Z\/
covdomans hezd
) dore. by Wight™ @ Lower lewedh
levels = 4"’%’)‘3’
@ Example | g@]ﬂchl'ﬁé_—@ _Bé. 1':[Pu)f m
rorathing on G \euif, codl -
b wiha Zusrond =%

Aspect Black Box Testing White Box Testing

No internal structure knowledge; focuses on

Knowledge Knows internal structure and code.

input/output.
tructural, gl X -
Also Known As Functional, data-driven, closed-box, behavioral. Structural, glass box, code-based,
transparent.
Programmin . . i
9 9 Minimal required. Complete knowledge required.
Knowledge
Testing Levels System, acceptance testing. Unit, integration testing.
Performed By Software testers. Software developers.
Time Less time-consuming. More time-consuming.
Basis External expectations. Internal code workings.
Testing Approach Trial and error; tests data domains. Tests internal boundaries and code paths.
Example Search on Google. Verify loops with input keywords.
Unit Testing

« Definition: The first level of testing, where individual units (functions, methods, modules, or objects) are tested in
isolation.

* Also Known As: Component testing.

» Performed By: Software developers.

« Testing Technique: White box testing.

« SDLC Phase: Coding phase.

¢ Tools: JUnit, NUnit, PHPUnit, EMMA, JMockit.

Purpose
« Verify code correctness and enable quick changes.
« Test every function and procedure.

» Fix bugs early to save costs.

SE

Aid documentation and code reuse.

Improve software efficiency.

Unit Testing in Object-Oriented Context

Tests packages, classes, methods, subclasses, and attributes (public, private, protected).

Example: Test individual modules (e.g., login, search, payment) in a project.

Advantages

Modular testing without waiting for other components.
Focuses on unit functionality.
Early issue detection improves quality.

Enhances development efficiency.

Disadvantages

Time-consuming to create and maintain test cases.
Limited to individual units, not interactions.

Requires ongoing maintenance with code changes.

Integration Testing

Definition: The second level of testing, where integrated modules are tested as a group to verify communication
and functionality.

Also Known As: Thread testing, string testing.
Performed By: Developers and testers.
Goal: Ensure correctness and interaction among modules.

Tools: Selenium, PyTest, JUnit, Jasmine, Steam, Mockito.

Purpose

Verify differing programming logic across modules.
Check database interactions.

Address untested requirement changes.

Detect module incompatibilities.

Ensure hardware-software compatibility.

Example

Gmail Application:
o User 1: Logs in, composes, and sends mail to User 2; saves to Draft or Sent Items.

o User 2: Logs in, checks Inbox, verifies mail receipt, replies if needed, logs out.

Types

1.

Incremental Integration Testing:
« Modules are integrated and tested one by one in ascending order.
« Tests data flow and function correctness.
« Subtypes:
o Top-Down:
= Starts with top-level modules, moving downward.

= Uses stubs (dummy programs) for missing lower modules.

60

= Prioritizes critical modules for early flaw detection.
o Bottom-Up:
= Starts with lowest modules, moving upward.
= Uses drivers (dummy programs) for missing higher modules.
= Allows simultaneous testing of subsystems.
« Example (Flipkart Application):
o Flow: Login > Home - Search - Add to Cart - Payment - Logout.
2. Non-Incremental Integration Testing (Big Bang Testing):
« Integrates and tests all modules at once after individual testing.
« Suitable for smaller systems.

« Difficult to pinpoint errors due to lack of parent-child hierarchy.

Incremental vs. Non-Incremental Testing

Aspect Incremental Testing Non-Incremental Testing

Integration Approach Tests modules gradually. Tests all modules at once.

Planning Requires step-by-step planning. Simpler, one-time planning.

Resource Efficiency Uses more resources (separate tests). Uses fewer resources (single test).

Issue Detection Early detection with progressive testing. Late detection due to bulk testing.

Complexity Manages smaller pieces, less complex. More complex due to testing everything.
Conclusion

Software testing ensures a product is reliable, functional, and meets user needs. Key principles guide defect detection,
while test cases verify functionality. White box testing examines code structure, black box testing focuses on
functionality, unit testing isolates components, and integration testing verifies module interactions. Understanding
these concepts, techniques, and examples is critical for exam success and effective software development.

Testing and Quality Assurance Exam Notes

1. System Testing
« Definition: Validates the fully integrated software product to ensure it meets end-to-end specifications.
« Type: Black-box testing by Quality Assurance (QA) team during testing phase.
« Focus: Functionality, accuracy, quality, expected output, overall behavior (not internal workings).
o Tools: Selenium, LoadRunner, JMeter, Microsoft Test Manager, SoapUl.
» Tool Choice Factors: Technology, project size, budget, testing requirements.
« Example: Testing an e-commerce app's checkout process for correct functionality.

« Key Point: Ensures the complete system works as intended.

2. Importance of System Testing
« Benefits:
o Improved Quality: Works across platforms/environments.
o Error Reduction: Exposes errors missed in unit/integration testing.
o Cost Savings: Reduces unexpected costs/delays.
o Security: Identifies vulnerabilities to protect user data.

o Customer Satisfaction: Enhances user experience, builds confidence.

SE

o Performance: Tracks memory, CPU usage, and system behavior.
« Example: System testing ensures a banking app is secure and performs well.

» Key Point: Critical for quality, security, and cost-effective delivery.

3. Types of Software Testing

« Performance Testing: Measures speed, load time, stability, reliability, response times.
o Example: Testing app response under heavy user load.

» Load Testing: Evaluates performance under real-life extreme loads (e.g., throughput, user count).
o Example: Simulating 10,000 users on a website.

« Usability Testing: Assesses ease of use, user error rates, task success, and satisfaction.
o Example: Checking if users can navigate an app intuitively.

» Regression Testing: Ensures new changes don't introduce defects or reintroduce old bugs.
o Example: Retesting after a software update.

» Migration Testing: Verifies system works after infrastructure changes.
o Example: Moving an app to a new server without issues.

« Functional Testing: Identifies missing functions to improve system quality.
o Example: Checking if all required features (e.g., login) work.

* Recovery Testing: Tests system recovery from errors/crashes.
o Example: Ensuring an app restarts after a crash.

o Stress Testing: Tests robustness under extreme loads.
o Example: Testing app behavior with overloaded servers.

» Software & Hardware Testing: Checks compatibility between software and hardware.
o Example: Ensuring an app runs on specific devices/OS.

» Key Point: Each type targets specific system aspects for comprehensive testing.

4. System Testing Example
+ Test Cases:
o Functionality: Input field accepts up to 20 characters (Expected: All characters valid).
o Security: Password rules enforced (Expected: Valid passwords accepted).
o Usability: Links work correctly (Expected: Links navigate to correct pages).
« Example: Testing a login page for character limits, password security, and link functionality.

» Key Point: Test cases verify specific system behaviors.

5. Acceptance Testing
« Definition: Final testing before release, performed by end-users/clients.
» Type: Black-box testing (also called User Acceptance Testing, Functional Acceptance Testing, Red Box Testing).
« Environment: User/live environment or real-time scenarios.
« Purpose: Ensures software meets user expectations and requirements.
+ Tools: Fitness Tools, Watir.
« Example: Client testing an app’s payment feature in a live-like setup.

» Key Point: Validates software for real-world use.

6. Importance of Acceptance Testing

62

o Benefits:

o

Identifies bugs missed during development.

o

Confirms product meets client/user expectations.

o

Builds client confidence through direct involvement.
o Ensures bug-free delivery.
o Satisfies SRS functionalities.
« Example: Ensuring a shopping app meets client needs before launch.

» Key Point: Critical for client satisfaction and final validation.

7.(types of acceptance testing)

« User Acceptance Testing (UAT):

o Performed from end-user perspective.

o Checks if software meets user requirements in a production-like environment.

o Focuses on functionality, not bugs.

o Example: Users testing a mobile app's navigation.
« Business Acceptance Testing (BAT):

o Verifies software meets business requirements and operational needs.

o Focuses on business risks and financial factors.

o Example: Ensuring an app supports business goals in a dynamic market.
« Regulations Acceptance Testing (RAT):

o Ensures compliance with regional rules/regulations.

o Non-compliance holds the product owner accountable.

o Example: Checking if an app adheres to GDPR regulations.

» Key Point: Each type ensures specific acceptance criteria are met.

8. Alpha vs. Beta Testing

o Alpha Testing:
o By internal testers (skilled employees).
o Uses white-box and black-box techniques.
o Focuses on bugs/errors, not in-depth reliability/security.
o Long execution cycles, done near development end.
o Example: Internal team testing app before beta.

» Beta Testing:
o By clients/end-users in real-time environments.
o Black-box testing only.
o Checks reliability, security, robustness.
o Short cycles (few weeks), final test before release.

o Example: Users testing a game app for real-world performance.

« Key Point: Alpha improves quality pre-beta; beta ensures readiness for users.

SE

63

SE

.
lt‘dplm »Ier'uCc]L Berle, TM'?lr'na f
O T h performedd byl @) pen Ponmed by—
-E‘ki&k/\/ nkidled Ao fod cl’;br\/‘f"

. D i LA
@ Tf r"n-\ml'.eﬁ b odh @ [=7.%]'-7- }:}ao}{
| while bex &£ black box 'Fm-ffnak

1 bea w‘m\:rfn&

I—*__i *

I@ 2rcdn |, fg_ @ 02\ ls Afea_a et kr
(C")lc[e) jay\a_ A b

‘s_____———————— a
@ foces en ﬁ‘nd’.:@ neliobr)y
ﬁ w . \ AECL«J‘\!‘D[_/ ¥
(B bl thowr (B foasthnl solh
fb[m;’l'-ﬂ}m{ éd, Shveba .,é?w‘,.ﬂ L, e

® cheik prochict () polme wbs

gralivte bafora bela el dtha whs—

Jenetiln R _ .
:?D lat Aondra Foy @ Jon - derdib 9
&
AL\"L;DPHH ot Eg,@ T Jéftz/_z,.;g e

i

9. Verification vs. Validation

o Verification:

o "Are we building the software right?” (Static testing).
o Checks documents, design, code by QA/developers.
o Methods: Inspections, reviews, walkthroughs.

o Finds bugs early, no code execution.

o Example: Reviewing code for correct syntax.

« Validation:

o "Are we building the right software?” (Dynamic testing).

o Tests actual product by testing team.

o Includes functional, system, integration, UAT.

o Involves code execution, catches missed bugs.

o Example: Testing a chat app's features (chatting, calls, sharing).

Key Point: Verification ensures correctness; validation ensures user needs are met.

10. Defect/Bug

Definition: Errors causing abnormal software behavior due to design/coding issues.

Variation: Difference between actual and expected results.

Defect Life Cycle: States a defect goes through for systematic fixing.
Performed By: Developers and testers.

Tools: JIRA, Trac, Redmine.

Example: A login failure due to incorrect code is a defect.

Key Point: Defects disrupt functionality; life cycle ensures efficient fixes.

11. Defect Life Cycle

Stages:

64

SE

o

o

New: Tester identifies defect, sends document to developers.
Assigned: Defect assigned to developer team.

Open: Developers fix or mark as Duplicate/Rejected/Deferred.
Fixed: Developer corrects code to remove defect.

Retest: Testers verify if defect is fixed.

Reopened: If defect persists, cycle restarts.

Verified: Tester confirms defect is fixed.

Closed: Issue closed after verification.

« Example: A bug in payment processing is identified, fixed, and verified.

» Key Point: Systematic process to track and resolve defects.

12. Testing vs. Debugging

o Testing:

o

o

o

o

o

Finds bugs/errors, done by testers.

Manual or automated, based on testing levels (unit, integration, system).

No programming knowledge required.
Part of SDLC, post-coding.

Example: Testing a form for input errors.

« Debugging:

o

o

o

o

Fixes bugs found during testing, done by developers.
Always manual, requires programming knowledge.
Subset of testing, starts with test case execution.

Example: Fixing code causing form input errors.

» Key Point: Testing identifies issues; debugging resolves them.

13. Software Quality

« Definition: Software's ability to function as per user requirements and SRS.

* Aspects:

o

o

o

o

o

Good Design: Attractive visualization.

Durability: Long-term functionality.
Consistency: Works across platforms/devices.
Maintainability: Easy bug fixes/feature additions.

Value for Money: Worth the investment.

« Example: A durable, user-friendly app justifies its cost.

« Key Point: Ensures functionality and user satisfaction.

14. Software Quality Dimensions

+ Dimensions:

o

o

o

o

o

Maintainability: Ease of modifying (features, bugs).
Portability: Transferable across locations.
Functionality: Performs specified functions.
Performance: Speed under load.

Compatibility: Works across devices/OS/browsers.

65

SE

o Usability: Ease of use.
o Reliability: Error-free under stated conditions.
o Security: Protects against unauthorized access.
« Example: A secure, portable app works on multiple devices.

» Key Point: Dimensions define quality standards.

15. Factors Affecting Software Quality
o Product Operation:
o Correctness, Reliability, Efficiency, Integrity, Usability.
e Product Revision:
o Maintainability, Flexibility, Testability.
e Product Transition:
o Portability, Reusability, Interoperability.
« Example: Usability ensures intuitive Ul; portability supports multiple platforms.

« Key Point: Factors ensure operational, revisable, and transferable quality.

16. Software Quality Metrics
o Customer Problem Metrics:
o Measures customer-reported issues.
o Formula: PUM = Total problems + Total license months.
o Customer Satisfaction Metrics:
o Rates satisfaction (Very Satisfied to Very Dissatisfied).
« Software Maintenance Metrics:
o Tracks defects post-release in customer environment.
+ Example: PUM calculates issues per license month for an app.

» Key Point: Metrics quantify quality and satisfaction.

17. Software Quality Management (SQM)
« Definition: Process ensuring software meets national/international standards (e.g., ANSI, IEEE, ISO).
* Needs:
o Delivers high-quality products on time.
o Builds stakeholder trust.
o Ensures customer satisfaction.
« Example: SQM ensures an app meets ISO standards for quality.

» Key Point: Maintains high standards for delivery and trust.

18. How to Achieve Software Quality
» Quality Assurance (QA):
o Ensures system meets requirements/expectations.
o Defines standards/methodologies for development.
o Covers correctness, efficiency, flexibility, etc.
« Quality Control (QC):

o Ensures quality parameters are met.

66

SE

o Focuses on timely, cost-accurate delivery.
« Quality Planning:

o Selects/modifies standards for a project-specific quality plan.
« Example: QA defines app standards; QC verifies functionality.

« Key Point: QA, QC, and planning ensure quality delivery.

19. Quality Assurance vs. Quality Control
« Quality Assurance (QA):
o Proactive, process-oriented, prevents defects.
o Defines standards, involves full SDLC.
o Done by all team members, no code execution.
o Example: Setting coding standards for an app.
« Quality Control (QC):
o Reactive, product-oriented, identifies/fixes defects.
o Verifies standards, involves testing life cycle.
o Done by testing team, involves code execution.
o Example: Testing app for defects post-development.

» Key Point: QA prevents issues; QC ensures product quality.

67

