Optical Fiber Communication: Revision

May, 2025

Contents

1	Dif	ferences	1
	1.1	Single Mode and Multimode Step Index Fibers	1
	1.2	Skew and Meridional Ray	2
	1.3	EDFA and SOA	2
	1.4	SLED and ELED	2
	1.5		3
	1.6		3
	1.7		3
	1.8	LED and Laser	4
	1.9	PN, PIN, Avalanche Photodiode	4
	1.10		5
	1.11	1 CWDM and DWDM	5
2		aphs	6
	2.1		6
	2.2		6
	2.3		7
	2.4		8
	2.5		8
	2.6	Optical Fiber Communication Diagram	0
	2.0		9
3			
3	Wo	orking Principle	9
3	Wo 3.1	orking Principle	9 9
3	Wo 3.1 3.2	Description Description Preform Fabrication Preform Fabrication	9 9 9
3	Wo 3.1	Orking Principle LED Preform Fabrication Fiber Drawing Process	9 9 9 9

1 Differences

1.1 Single Mode and Multimode Step Index Fibers

Feature Single Mode Step Index Fiber		Multimode Step Index Fiber
Core Size	8–10 µm	$50-62.5 \ \mu \mathrm{m}$
Light Propagation	Single mode (one path)	Multiple modes
Bandwidth	High (low dispersion)	Lower (high dispersion)
Attenuation	Low (longer distances)	Higher (shorter distances)
TransmissionUp to 100s of km		Up to a few km
Applications	Long-haul telecom, high-speed internet	LANs, data centers, short-range
Cost	More expensive	Less expensive
Light Source Lasers		LEDs or less costly lasers

1.2 Skew and Meridional Ray

Parameter Meridional Ray		Skew Ray
Path Relative to Axis	Passes through the fiber's central axis	Does not pass through the central axis
Acceptance Angle	Smaller, limited by critical angle	Larger
Propagation Loss	Lower (propagates near core center)	Higher (near core edge, often leaky)
Ray Abundance Less numerous due to strict entry angle		More numerous due to wider entry angle
Ray Behavior	Bound: Confined in core by total internal re- flection if angle ¿ critical angle; Unbound: Re- fracted into cladding if angle ; critical angle	Mostly leaky rays, partially reflected
Path Geometry Simpler path, lies in a single plane		Helical path, complex 3D trajectory
Modal Dispersion	Lower	Higher

1.3 EDFA and SOA

Parameter	EDFA	SOA	
Gain Medium	Erbium-doped silica fiber	Semiconductor (e.g., InGaAsP)	
Amplification	20–40 nm (C-band: 1530–1565 nm, L-band:	40–100 nm (850–1600 nm)	
Bandwidth	1570-1625 nm)	40–100 mm (850–1000 mm)	
Noise Figure	4–7 dB (Low)	6–10 dB (High)	
Gain	20-40 dB (high gain)	10–30 dB (moderate gain)	
Applications	Long-haul telecom, WDM systems, CATV,	Metro networks, single-channel amplification,	
Applications	data centers	optical switching	
Power	Higher (optical pumping at 980 nm or 1480	Lower (electrical pumping)	
Consumption	nm)	Lower (electrical pumping)	
Best Use	Long-distance, high-capacity WDM systems	Short-range, compact, cost-sensitive applica-	
Dest Use	Long-distance, high-capacity wDW systems	tions	
Size	Larger (meters of fiber)	Compact (chip-scale)	
Polarization	Low (polarization-insensitive)	Moderate to high	
Dependence			

1.4 SLED and ELED

		ELED (Edge-Emitting LED)
	A semiconductor device emitting incoherent	A semiconductor device emitting partially co-
Definition	light perpendicular to the substrate surface	herent light from the edge of the chip via spon-
	through spontaneous emission.	taneous emission.
Suitable Fiber	Primarily multimode fibers due to broad emis-	Multimode fibers; can be optimized for single-
Type	sion; less suited for single-mode fibers.	mode fibers with better coupling.
Coupling	Low $(5-20\%)$; wide emission angle reduces ef-	Higher (20–50%); narrower emission improves
Efficiency	ficiency with fiber coupling.	coupling to fibers.
Beam Shape	Broad, circular or slightly elliptical beam due	Narrow, elliptical beam from edge emission,
Dealli Shape	to surface emission.	more collimated.
Emission	Low directionality; emits over a wide angle	Higher directionality; emits in a narrower an-
Directionality	(30–60°).	gle $(10-30^{\circ})$.
Fabrication	Simpler; uses standard LED processes with	Moderate; requires precise edge cleaving or
Complexity	surface emission design.	polishing and waveguide design.
Active Region	Active region parallel to substrate, emitting	Active region parallel to substrate, emitting
Orientation	light perpendicular to surface.	light from cleaved or polished edge.
Application	Displays, short-range optical communication,	Short-haul telecom, local area networks
Application	general-purpose lighting, sensors.	(LANs), fiber optic data links.

1.5 Homostructure and Heterostructure LED

Parameter	Homostructure LED	Heterostructure LED
Material Used	Single semiconductor material (e.g., GaAs);	Different semiconductor materials (e.g.,
(Type)	same material throughout.	GaAs/AlGaAs); distinct layers.
Band Gap	Uniform hand gap agross the structure	Varying band gaps due to different materials
Daliu Gap	Uniform band gap across the structure.	in layers.
Structure	Single p-n junction with uniform composition.	Multiple layers (p-n or p-i-n) with different
Structure	Single p-in junction with uniform composition.	compositions.
Carrier	Poor; carriers spread, reducing efficiency.	Excellent; carriers confined to active region by
Confinement	roor, carriers spread, reducing enciency.	heterojunctions.
Optical	Weak; no waveguide, light scatters.	Strong; heterostructure acts as optical waveg-
Confinement	weak, no waveguide, light scatters.	uide.
Beam Direction	Broad, omnidirectional emission.	More directional, guided by structure.
Recombination	Lower; high non-radiative recombination.	Higher; reduced non-radiative losses.
Efficiency	Lower, mgn non-radiative recombination.	ringher, reduced non-radiative losses.
Application	Basic indicators, low-cost displays.	High-efficiency displays, fiber optics, lasers.

1.6 PN Junction Diode vs LED

Parameter PN Junction Diode		LED (Light-Emitting Diode)
Material Used (Type)	Single semiconductor (e.g., Si, GaAs); same material for p and n regions.	Direct bandgap semiconductors (e.g., GaAs, GaN); same or different materials in het- erostructures.
Band GapIndirect or direct; not optimized for light emis- sion (e.g., Si: indirect).		Direct bandgap for efficient light emission.
		P-n or heterostructure (e.g., GaAs/AlGaAs) with active region for luminescence.
Carrier Moderate; carriers recombine in depletic		Strong; confined to active region for radiative
Confinement	gion.	recombination.
Optical Confinement	None; not designed for light emission.	Strong; structure enhances light output (e.g., via waveguide or surface design).
Beam Direction	N/A; no significant light emission.	Broad or directional, depending on design (surface or edge-emitting).
Recombination Efficiency	Low; mostly non-radiative recombination.	High; optimized for radiative recombination.
Application	Rectification, switching, signal processing in electronics.	Displays, lighting, optical communication, in- dicators.

1.7 Optical Band and Electrical Band Differences

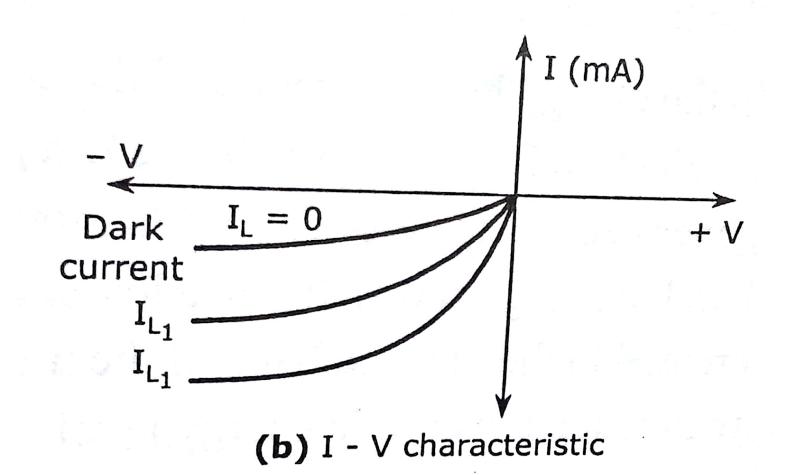
Parameter	Optical Band	Electrical Band
Power Gain	0.5 of its mid value	0.707 of its mid value
Drops At		
Corresponding	3 dB drop at band edges $(10log_{10}(0.5))$	$3 \text{ dB} (10 \log_{10}(0.707^2))$
Value (dB)	5 dD drop at band edges ($1000910(0.5)$)	5 dD (10/0910(0.101))
Measured Items	Optical power (mW or dBm), signal-to-noise	Voltage, current, power (W or dBm)
Measured Rems	ratio	voltage, current, power (w or ubin)
Relationship	$\sqrt{2}$ × Electrical Bandwidth	$\frac{1}{\sqrt{2}}$ × Optical Bandwidth
Power	$P_{\rm opt} \propto I$ (e.g., in optical sources like LEDs)	$P_{\text{electric}} \propto I^2$ (e.g., resistive loads)
Dependency	^{<i>I</i>} opt & <i>I</i> (e.g., in optical sources like LEDS)	I electric $\propto I$ (e.g., resistive loads)

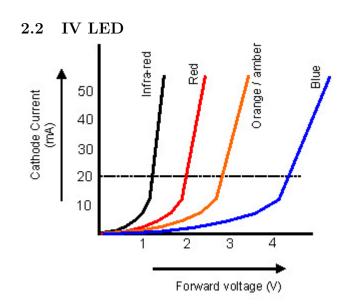
1.8 LED and Laser

Parameter	LED	Laser
Light Source	Incoherent, broad spectrum	Coherent, narrow spectrum
Wavelength	850–1300 nm	1310–1550 nm
Range	850-1500 mm	1310–1350 IIII
Bandwidth	Low (50–200 MHz)	High (GHz to THz)
Data Rate	Up to 1 Gbps	10 Gbps and higher
Fiber Type	Multimode	Single-mode or Multimode
Transmission	Short (up to 2 km)	Long (10–100 km)
Distance	Short (up to 2 km)	Long (10–100 km)
Power Output	Low $(0.1-10 \text{ mW})$	High (1–100 mW)
Cost	Lower	Higher
Modulation	Simple (on-off keying)	Complex (e.g., QAM, coherent)
Spectral Width	Wide (30–60 nm)	Narrow (0.1–10 nm)
Applications	LAN, short-range systems	Long-haul, high-speed networks
Complexity	Simple setup	Requires precise control

1.9 PN, PIN, Avalanche Photodiode

Parameter	PN Photodiode	PIN Photodiode	AvalanchePhotodiode(APD)
Structure	Simple p-n junction	P-type, intrinsic, n-type layers	P-n junction with high-field re- gion
Depletion Region	Narrow	Wide (due to intrinsic layer)	Wide with avalanche multiplica- tion
Response Speed	Moderate (1–10 ns)	Fast (0.1–1 ns)	Very fast $(0.1-0.5 \text{ ns})$
Sensitivity	Low	Moderate	High (due to internal gain)
Gain	No internal gain (M=1)	No internal gain (M=1)	High internal gain (M=10–100)
Noise	Low shot noise	Low shot noise	Higher noise (due to avalanche process)
Bias Voltage	Low (0–5 V)	Moderate (5–50 V)	High (50–200 V)
Bandwidth	Limited (100 MHz–1 GHz)	High (1–10 GHz)	High (1–10 GHz)
Applications	Low-speed, short-range systems	General-purpose, medium-range systems	Long-haul, high-sensitivity sys- tems
Cost	Low	Moderate	High
Power			
Consump- tion	Low	Moderate	High (due to high bias voltage)
Quantum Efficiency	Moderate $(50-70\%)$	High (70–90%)	High (70–90%)


1.10 Phase and Group Velocity


Parameter	Phase Velocity	Group Velocity
Definition	Speed of individual wave phase $(v_p = \frac{\omega}{k})$	Speed of overall wave packet or signal $(v_g = \frac{d\omega}{dk})$
Physical	Rate at which a single frequency component	Rate at which information or energy travels
Meaning	propagates	itate at which information of energy travels
Relation to	a C where $\pi(a)$ is the refractive index	$v_g = \frac{c}{n_g}$, where $n_g = n + \omega \frac{dn}{d\omega}$ is the group
Refractive Index	$v_p = \frac{c}{n(\omega)}$, where $n(\omega)$ is the refractive index	index
Dispersion	Not affected by dispersion directly	Affected by material and waveguide disper-
Impact	Not anected by dispersion directly	sion, causing pulse broadening
Typical Value in	$2 \times 10^8 \mathrm{m/s}$ (e.g., for silica, $n \approx 1.5$)	Slightly less than v_p , $1.98 \times 10^8 \mathrm{m/s}$ due to
Fiber		$n_g > n$
Role in Optical	Governs propagation of monochromatic waves	Determines signal transmission speed and
Fiber		data rate
Applications	Relevant for phase-matching in nonlinear op-	Critical for signal integrity, timing, and band-
Applications	tics	width in communication

1.11 CWDM and DWDM

Parameter CWDM		DWDM
Full Form Coarse Wavelength Division Multiplexing		Dense Wavelength Division Multiplexing
Definition	A technology that multiplexes multiple optical signals with widely spaced wavelengths onto a single fiber to increase capacity	A technology that multiplexes many closely spaced optical signals onto a single fiber for high-capacity data transmission
Wavelength Spacing	Wide (20 nm)	Narrow (0.4–0.8 nm)
Number of Channels	Up to 18 (1270–1610 nm)	40–80 or more (C-band: 1530–1565 nm)
Transmission Distance	Short to medium (up to 80 km)	Long (100–1000 km with amplification)
Bandwidth per Channel	Lower (up to 10 Gbps)	Higher (10–100 Gbps)
Cost	Lower (simpler components)	Higher (precision components, amplifiers)
Laser Requirements	Uncooled lasers (less precise)	Cooled, high-precision lasers
Amplification	Limited (no EDFA support)	Supports EDFA for long distances
Applications	Metro networks, access networks	Long-haul, high-capacity networks

- 2 Graphs
- 2.1 IV Photodiode

ATTENUATION dB/km

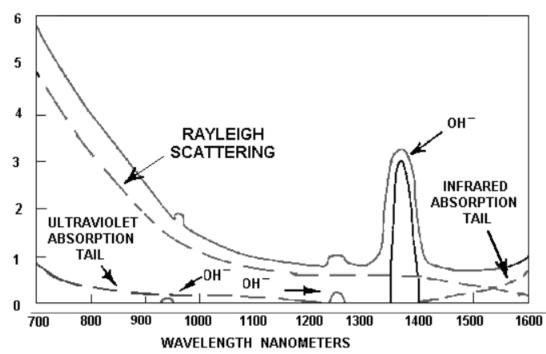


Figure 2-21.—Fiber losses.

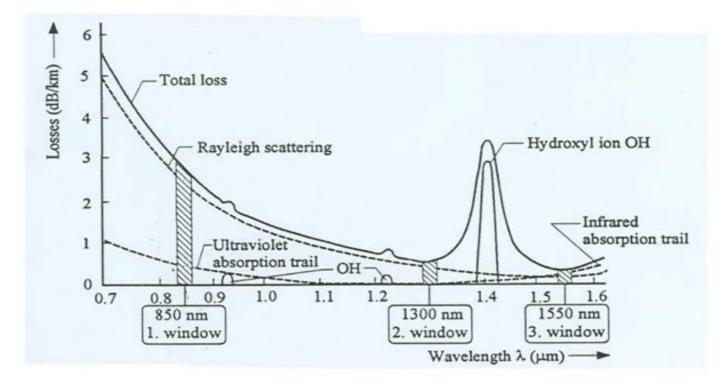
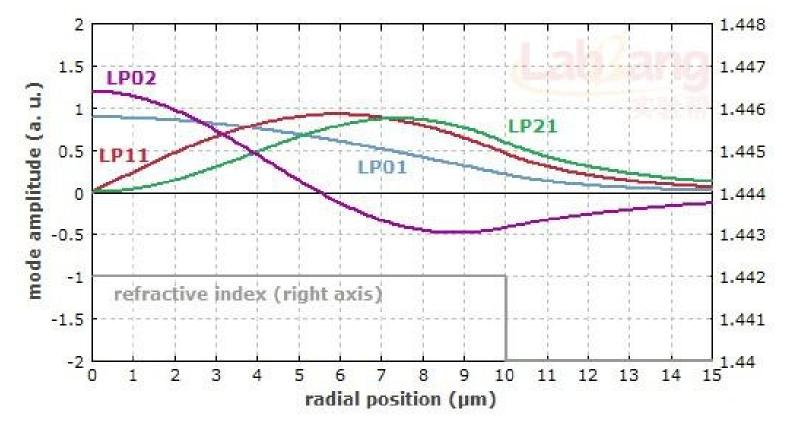
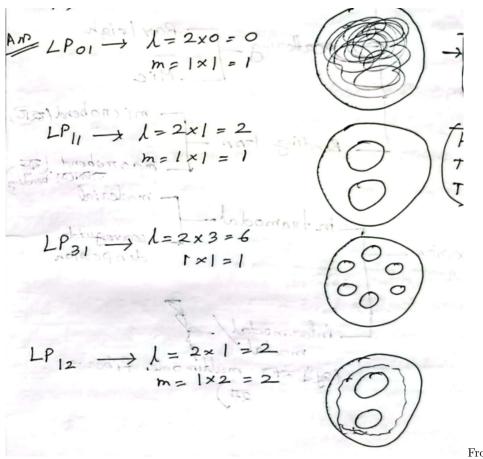
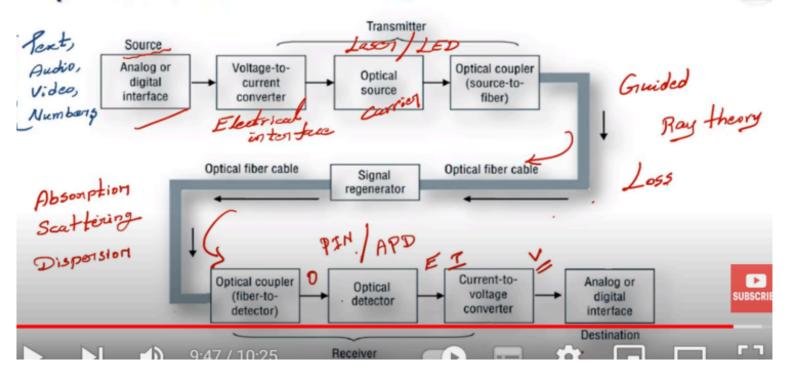




Figure 8- Optical communication windows


2.5 LP

From : Atkia apu

2.6 Optical Fiber Communication Diagram

Optical Fiber Communication Link

3 Working Principle

3.1 LED

Step	Description
P-N Junction	LED has a p-n junction with p-type (hole-rich) and n-type (electron-rich) materials.
Forward Bias	Forward voltage pushes electrons (n-side) and holes (p-side) toward the junction.
Carrier Recombination	Electrons and holes recombine in the depletion region, releasing energy.
Light Emission	Energy released as photons via electroluminescence, based on bandgap E_g .
Wavelength	Light wavelength given by $\lambda = \frac{hc}{E_g}$, typically 850–1300 nm.
Light Coupling	Emitted light coupled into optical fiber using lenses or direct attachment.
Data Modulation	Light modulated (e.g., on-off keying) by varying current to encode data.

3.2 Preform Fabrication

Uses Chemical Vapor Deposition (CVD), specifically Inside Vapor Deposition.

Parameter	Description
Step 1: Substrate	Rotate a hollow glass tube (40 cm) in a lathe as the substrate.
Step 2: Material	Inject $SiCl_4 + O_2$ and dopants (e.g., GeCl) into the tube.
Injection	
Step 3: Soot Formation	Heat with a hydrogen burner (1600°C) to form SiO soot particles.
Step 4: Soot Deposition	Soot deposits on the tube's inner surface, building layers.
Step 5: Core vs.	Core: Doped SiO_2 (Ge, Al, P, Ti, higher RI); Cladding: Pure SiO or doped (F, B, lower RI).
Cladding	
Step 6: Collapse	Heat to 2000°C to collapse the tube into a solid preform rod.

3.3 Fiber Drawing Process

raws the preform into a thin fiber for optical communication.

Parameter	Description
Step 1: Drawing Tower	Place preform in a drawing tower.
Step 2: Softening	Heat preform tip (2000 degree C) with a gas burner or graphite heater to soften.
Step 3: Fiber Pulling	Pull softened glass into a thin fiber (125 µm diameter).
Step 4: Diameter	Use a Diameter Monitor to maintain 125 µm, adjusting pulling speed.
Control	
Step 5: Coating	Apply UV-curable polymer coating to protect the fiber.
Step 6: Curing	Cure coating with UV light.
Step 7: Tension Control	Use a Capstan to control pulling speed and tension.
Step 8: Winding	Wind the fiber onto a Take-up Reel.

3.4 Laser

Step	Description
Stimulated Emission	The core process of light generation. Electrons in a semiconductor (e.g., GaAs) absorb energy via
	electrical pumping, exciting them to a higher energy state (conduction band). Spontaneous
	<i>emission</i> occurs when electrons drop to a lower energy state, emitting random photons. <i>Stimulated</i>
	<i>emission</i> happens when an incoming photon of specific wavelength (λ) triggers an excited electron
	to drop, emitting a coherent photon with the same λ , phase, and direction. This produces the
	laser's coherent light, critical for high-speed optical fiber communication.
Population Inversion	Achieved by injecting a high current into the p-n junction, creating more electrons in the higher
	energy state than in the lower state, unlike thermal equilibrium. This inversion ensures stimulated
	emission dominates over absorption, amplifying the light output. In optical fibers, this enables
	high-intensity, narrow-spectrum light (e.g., 1310–1550 nm) for long-distance transmission.
Resonant Cavity (Fabry-Perot)	The laser's optical cavity, typically a Fabry-Perot resonator, consists of two parallel mirrors
	(cleaved facets of the semiconductor). Photons bounce between mirrors, stimulating further
	emissions and amplifying light at specific wavelengths $(\lambda = \frac{hc}{E_a})$. The Fabry-Perot cavity selects
	resonant modes, ensuring a narrow linewidth for coherence. Light exits one partially reflective
	mirror, coupled into the fiber for data transmission with modulation (e.g., QAM).