
QA : Compiler Constructor 1

QA : Compiler Constructor
Created by B Borhan

Last edited time

Tag

Resources

Best: https://www.youtube.com/playlist?
list=PLxCzCOWd7aiEKtKSIHYusizkESC42diyc

Operator Precedence Function : https://www.youtube.com/watch?
v=2sIHp7ny47o&ab_channel=WITSolapur-ProfessionalLearningCommunity

https://www.tutorialspoint.com/construct-the-slr-parsing-table-for-the-
following-grammar-also-parse-the-input-string-a-b-plus-a

Slide 1-7

Define language processing system? Briefly describe the phase of language
processing system.

The program which translate the program written in a programming language by the
user into an executable program is known as language processors.

It includes all header files and also
evaluates whether a macro

The compiler takes the modified
code as input and produces the
target code as output.

The assembler takes the target code
as input and produces real locatable
machine code as output.

Linker or link editor is a program
that takes a collection of objects
(created by assemblers and
compilers) and combines them into
an executable program.

@November 6, 2024 10:53 PM

https://www.youtube.com/playlist?list=PLxCzCOWd7aiEKtKSIHYusizkESC42diyc
https://www.youtube.com/playlist?list=PLxCzCOWd7aiEKtKSIHYusizkESC42diyc
https://www.youtube.com/watch?v=2sIHp7ny47o&ab_channel=WITSolapur-ProfessionalLearningCommunity
https://www.youtube.com/watch?v=2sIHp7ny47o&ab_channel=WITSolapur-ProfessionalLearningCommunity
https://www.tutorialspoint.com/construct-the-slr-parsing-table-for-the-following-grammar-also-parse-the-input-string-a-b-plus-a
https://www.tutorialspoint.com/construct-the-slr-parsing-table-for-the-following-grammar-also-parse-the-input-string-a-b-plus-a

QA : Compiler Constructor 2

The loader keeps the linked
program in the main memory.

Why it is necessary to divide compilation process in to various phases?

Reason Explanation

Modularity
Each phase handles a specific aspect of compilation, making the
process easier to manage and understand. This separation allows
for modifications in one phase without affecting others.

Error Detection
By breaking down the compilation into phases, errors can be
detected and reported at different stages, facilitating easier
debugging and correction of code.

Optimization
Each phase can apply specific optimizations relevant to that stage,
improving overall performance without compromising the
functionality of the code.

Separation of Concerns
Each phase addresses distinct tasks such as lexical analysis,
syntax analysis, semantic analysis, optimization, and code
generation, enhancing clarity and focus.

Efficiency
Phases can be designed to handle specific tasks in an efficient
manner, allowing for parallel processing and better resource
utilization.

Maintainability
A phased approach allows for easier updates and maintenance, as
changes can be localized to specific phases without requiring a
complete overhaul of the compiler.

Support for Different
Languages

Phases can be tailored to support multiple programming languages
by adjusting only the relevant parts of the compilation process,
making the compiler more versatile.

Differentiate between context-free-grammar and regular expression.

Aspect Context-Free Grammar (CFG) Regular Expression (RE)

Language
Class Context-Free Languages (CFL) Regular Languages (RL)

Expressiveness
More powerful; handles nested
structures Limited; cannot handle nesting

Parsing
Complexity

Requires complex parsers (e.g.,
LL, LR) Parsed with finite automata (simpler)

Usage
Syntax of programming
languages, nested structures

Pattern matching in text, simple
validations

Grammar
Structure

Defined by production rules in
the form of A → α , where A is
a non-terminal and α is a

Defined by a combination of literals,
operators (e.g., * , +), and
metacharacters.

QA : Compiler Constructor 3

Aspect Context-Free Grammar (CFG) Regular Expression (RE)
sequence of terminals and/or
non-terminals.

Context Free Grammar is formal
grammar, the syntax or
structure of a formal language
can be described using
context-free grammar (CFG), a
type of formal grammar. The
grammar has four tuples:
(V,T,P,S).

V - It is the collection of

variables or non-terminal

symbols.

T - It is a set of terminals.

P - It is the production

rules that consist of both

terminals and non-terminals.

S - It is the starting

symbol.

Regular expressions are sequences of
characters that define search patterns,
primarily used for string matching within
texts.

Write down a regular expression for fractional number and identifier. Draw the
-NFA for the regular expression (a|b)*bab.

digits → ﻿

letters → ﻿

Fractional number → ﻿

Identifier → ﻿

What is backtracking in top-down parsing?

In Top-Down Parsing with Backtracking, Parser will attempt multiple rules or
production to identify the match for input string by backtracking at every step of
derivation. So, if the applied production does not give the input string as needed, or
it does not match with the needed string, then it can undo that shift.

[0 − 9]

[A− Z]∣[a− z]

(+∣−)?digits (.digits)?(E(+∣−)?digits)?+ + +

(letters∣_)(letters∣digits∣_)∗

QA : Compiler Constructor 4

Shortly describe scope management of symbol table with proper example

Symbol table is an important data structure created and maintained by compilers in
order to store information about the occurrence of various entities such as variable
names, function names, objects, classes, interfaces, etc. Symbol table is used by
both the analysis and the synthesis parts of a compiler.

A compiler maintains two types of symbol tables: a global symbol table which can
be accessed by all the procedures and scope symbol tables that are created for
each scope in the program.

first a symbol will be searched in the
current scope, i.e. current symbol
table.

if a name is found, then search is
completed, else it will be searched
in the parent symbol table until,

either the name is found or global
symbol table has been searched for
the name.

[https://www.tutorialspoint.com/compiler_design/compiler_design_symbol_table.htm]

Define symbol table. Briefly describe four common error-recovery strategies
that can be implemented in the parser to deal with errors in the code

https://www.tutorialspoint.com/compiler_design/compiler_design_symbol_table.htm

QA : Compiler Constructor 5

Symbol table is an important data structure created and maintained by compilers in
order to store information about the occurrence of various entities such as variable
names, function names, objects, classes, interfaces, etc.

1. Panic Mode Recovery: The parser skips tokens until it finds a synchronization
point, like a semicolon or closing brace. This method prevents further errors by
resuming parsing from a safe point, often leading to simpler and faster error
recovery.

In this method, successive characters from the input are removed one at a
time until a designated set of synchronizing tokens is found. Synchronizing
tokens are deli-meters such as ; or }

The advantage is that it’s easy to implement and guarantees not to go into an
infinite loop

The disadvantage is that a considerable amount of input is skipped without
checking it for additional errors

2. Phrase-Level Recovery: The parser makes local corrections, such as inserting,
deleting, or replacing tokens to continue parsing. This approach attempts to
correct errors by modifying nearby tokens, allowing the parser to proceed with
minimal disruption.

In this method, when a parser encounters an error, it performs the necessary
correction on the remaining input so that the rest of the input statement
allows the parser to parse ahead.

The correction can be deletion of extra semicolons, replacing the comma
with semicolons, or inserting a missing semicolon.

While performing correction, utmost care should be taken for not going in an
infinite loop.

A disadvantage is that it finds it difficult to handle situations where the actual
error occurred before pointing of detection

3. Error Productions: The parser includes specific grammar rules (error
productions) to handle anticipated errors. When an error production matches an
input pattern, the parser can give a more descriptive error message and
proceed, aiding in the diagnosis of expected mistakes.

QA : Compiler Constructor 6

4. Global Correction: This approach involves finding the minimal set of changes to
the input to make it syntactically correct, often using advanced algorithms. While
it provides the best possible correction, it’s computationally expensive and
typically not used in real-time compilers

The parser examines the whole program and tries to find out the closest
match for it which is error-free.

The closest match program has less number of insertions, deletions, and
changes of tokens to recover from erroneous input.

Due to high time and space complexity, this method is not implemented
practically

Show the phases of compiler for the statement position :=initial + rate*60

QA : Compiler Constructor 7

What is input buffering? “Buffer pair with sentinels optimizes a code by
reducing the number of tests”- do you agree with the statement? Justify your
answer accordingly with an example.

QA : Compiler Constructor 8

How to recover error using panic mode error recovery in LL(1) parser? Explain.

It is based on the idea of skipping symbols on the input until a token in a selected set
of synchronizing tokens appears. The synchronizing set should be chosen so that
the parser recovers quickly from error that are likely to occur in practice .

If the parser looks up the entry M[A, a] and finds that it is blank, then the input
symbol a is skipped.

If the entry is synch, then the nonterminal on the top of the stack is popped in
an attempt to resume parsing.

QA : Compiler Constructor 9

If a token on the top of the stack does not match the input symbol, then we
pop the token from the stack.

Draw a transition diagram accepting both integer and floating-point numbers
with exponentiation.

One Pass Compiler Two Pass Compiler/Multi pass

It performs Translation in one pass It performs Translation in two pass

It scans the entire file only once. It requires two passes to scan the source file.

It doesn’t generate intermediate code It generates intermediate code

Speed fast Speed slow

Time less Time more

Memory more memory less

not portable portable

QA : Compiler Constructor 10

(a) Translator is a program that converts code written in one language into another
language. This process is essential in computing because it allows programs written
in high-level, human-readable languages to be transformed into low-level machine
code, which the computer can execute.

(b)

The lexical analyzer, also known as a scanner or lexer, is the first phase of a
compiler. It reads the source code character by character and groups these
characters into meaningful sequences called tokens.

The
syntax analyzer, also known as the parser, is the second phase of a compiler. It

QA : Compiler Constructor 11

takes the tokens produced by the lexical analyzer and arranges them into a tree-like
structure called a parse tree or syntax tree

(c)

Transition diagram can be interpreted as a flowchart for an algorithm recognizing
a language.

Which is constructed by

There is a node for each state in Q,
represented by the circle

There is a directed edge from a
node p to node q labeled if

﻿

Starting state, there is an arrow with
no source

Final states indicating by a double
circle

A token is a pair consisting of a token name and an optional attribute value.
A pattern is a description of the
form that the lexemes of a token may take [or match].
A lexeme is a
 sequence of characters in the source program that matches the pattern for a token
and is identified by the lexical analyzer as an instance of that token.

δ(p,a) = p

QA : Compiler Constructor 12

Error in structure

Missing operators

Unbalanced parenthesis

int a = 5 // semicolon is missing

x = (3 + 5; // missing closing parenthesis ')'

y = 3 + * 5; // missing argument between '+' and '*'

(b)What are the points in the parsing process at which an operator-precedence
parser can discover syntactic errors?

There are two points in the parsing process at which an operator-precedence parser
can discover syntactic error:

If no precedence relation holds between the terminal on top of the stack and the
current input.

QA : Compiler Constructor 13

If a handle has been found, but there is no production with this handle as a right
side.

Show the comparisons among error recovery strategies in a lexical analyzer
with examples.

QA : Compiler Constructor 14

Error Recovery
Strategy

Description Example Pros Cons

Panic Mode

Skips tokens
until it reaches a
known,
predefined
delimiter (e.g., a
semicolon ; or
end of
statement) to
resume
processing from
a safe point.

If an error
occurs in int x
= 10 y; , the
analyzer skips
y; and

resumes after
; .

Simple and
quick recovery;
avoids
cascading
errors.

Loss of tokens;
may skip over
valid code
unintentionally.

Error Token
Insertion

Inserts an
artificial token
to make the
input stream
valid and
continue
processing.

In int x = ; ,
the lexer may
insert a
placeholder
token (e.g., 0)
after = to
continue.

Preserves
structure; often
used for minor
syntax errors.

Can lead to
inaccuracies by
adding tokens
that aren't part
of the original
input.

Error Token
Deletion

Deletes
offending
tokens to
resolve the error
and move
forward.

In int x 10 =
20; , deleting
10 can allow x
= 20; to be
parsed
correctly.

Efficient in
certain
contexts;
reduces clutter
by removing
extraneous
tokens.

Risks deleting
too many
tokens; may
alter the
intended
meaning of the
code.

Transpose two
serial
characters

Replace a
character with
another
character

What do you mean by an ambiguous grammar? What are the main reasons of
ambiguity and how can ambiguity be eliminated?

 Ambiguous grammar is a grammar which produces more than one parse tree for a
same string.

The main reasons:

Precedence

Associativity

QA : Compiler Constructor 15

Dangling else

Remove:

Rewriting the grammar

Use ambiguous grammar with additional rules

QA : Compiler Constructor 16

Another one to remove Left recursion

QA : Compiler Constructor 17

QA : Compiler Constructor 18

QA : Compiler Constructor 19

(With check LL(1) or not)

[Used space as separator in FIRST and FOLLOW]

QA : Compiler Constructor 20

QA : Compiler Constructor 21

QA : Compiler Constructor 22

QA : Compiler Constructor 23

Slide 7-14

Develop an algorithm for constructing an SLR parsing table. Write down the
phases of a compiler.

Input : An augmented grammar G’

Output : The SLR parsing table functions action and goto for G’

QA : Compiler Constructor 24

Phases of a compiler

Lexical Analysis

Syntax Analysis

Semantics Analysis

Intermediate Code Generation

Code Optimization

Target Code Generation

What is precedence function? Show how to construct precedence function with
an example.

 Precedence functions that map terminal symbols to integers.

Precedence relations between any two operators or symbols in the precedence table
can be converted to two precedence functions f & g that map terminals symbols to
integers.

For each terminal a, create this symbol fa and ga

if a<. b, mark edge from gb to fa

if a .> b, Mark an edge from fa to gb

QA : Compiler Constructor 25

Maximum Length for each Node

Id + * $

F 4 2 4 0

G 5 1 3 0

Solution:

Conditions for a grammar to be an
operator grammar :

No R,H,S of any production has a ﻿

No two non-terminals are adjacent.
﻿We can remove ﻿, because it is
unreachable.

Show the parsing steps for the string id * id+id using operator precedence parsing
technique (Note: You must include the precedence table in your answer).

ϵ

P → SbP ∣SbS∣S
R → bP ∣bS
S → WbS∣W
W → L ∗ W ∣L
L → id

R

QA : Compiler Constructor 26

Another Question

What do you mean by Shift-Reduce conflict? Explain with an example.

QA : Compiler Constructor 27

What do you mean by Reduce-Reduce conflict? Explain with an example.

Differentiate among LR parsers.

SLR Parser LALR Parser CLR Parser

Simple LR Lookahead LR Canonical LR

QA : Compiler Constructor 28

SLR Parser LALR Parser CLR Parser

It is very easy and cheap to
implement.

It is also easy and cheap to
implement.

It is expensive and difficult
to implement.

SLR Parser is the smallest in
size.

LALR and SLR have the same
size. As they have less number
of states.

CLR Parser is the largest. As
the number of states is very
large.

Error detection is not
immediate in SLR.

Error detection is not
immediate in LALR.

Error detection can be done
immediately in CLR Parser.

SLR fails to produce a parsing
table for a certain class of
grammars.

It is intermediate in power
between SLR and CLR i.e., SLR
≤ LALR ≤ CLR.

It is very powerful and
works on a large class of
grammar.

It requires less time and
space complexity.

It requires more time and
space complexity.

It also requires more time
and space complexity.

Define handle with an example. What are the rules for constructing closure of
item sets and goto operation?

A handle is a substring of grammar
symbol in a right-sentential form that
matches a right hand side of a string.

If ‘I’ is a set of items for a grammar G
then closure of I is set of items
constructed I by two rules:

Initially, add every item in I to colure
(I)

Goto Operation

QA : Compiler Constructor 29

If ﻿ is in closure (I) and
﻿ is a production, then add

item ﻿ to I, if it is not already
in existence.

Apply this rule until no more new
items can be added to closure (I)

If there is a production
﻿ then

﻿

Simply shifting of dot (.) one
position ahead over the grammar
symbol.

The rule ﻿ is in I then the
same goto function can be written
as goto(I, B).

Goto (I, X), where I is a set of items
and X is a grammar symbol, is
defined as the closure of the set of
all items ﻿ such that

﻿ is in I.

A → α ⋅Bβ
B → γ

B → ⋅γ

A → α ⋅
Xβ goto(A → α ⋅Xβ,X) =

A → αX ⋅ β

A → α ⋅Xβ

[A → αX ⋅ β]
[A → α ⋅Xβ]

QA : Compiler Constructor 30

QA : Compiler Constructor 31

QA : Compiler Constructor 32

QA : Compiler Constructor 33

QA : Compiler Constructor 34

QA : Compiler Constructor 35

﻿

Contrast quadruples and triples with an example.

Define indirect triple with an example.

Quadruples

It is a structure which consists of 4
fields namely operator, op1, op2 and
result.

op = operand

Pros:

Triples

This representation doesn’t make use of
extra temporary variable to represent a
single operation.

Pros:

L → LB

QA : Compiler Constructor 36

Statement movement possible

Quickly access value of temporary
variables

Cons:

Memory inefficient

-(a*b)+(c*d+e)

Memory efficient compared to
quadruples

Cons

Statement movement is not possible

Indirect Triples

This representation makes use of
pointer to the listing of all references to
computations which is made separately
and stored.

Pros

Statement movement possible

Cons

QA : Compiler Constructor 37

Two memory reference is required

A dependency graph is used to represent the flow of information among the
attributes in a parse tree.

A dependency graph cannot be cyclic because cycles, or circular dependencies,
make it impossible to evaluate the objects in the graph in a valid order.

QA : Compiler Constructor 38

Backpatching is basically a process of fulfilling unspecified information.
Backpatching is a method to deal with jumps in the control flow constructs like if
statements, loop etc. in the intermediate code generation phase of the compiler.

QA : Compiler Constructor 39

QA : Compiler Constructor 40

What do you mean by concrete and abstract syntax tree? Explain with
examples.

A parse tree is called a concrete syntax tree. A parse tree pictorially shows how the
start symbol of a grammar derives a string in the language.

An abstract syntax tree (AST) is defined by the compiler writer as a more convenient
intermediate representation. AST only contains semantics of the code.

QA : Compiler Constructor 41

(a)

Synthesized: An attribute is said to be synthesized attribute if its parse tree node
value is determined by the attribute at child nodes.

Inherited: An attributed is said to be inherited attribute if its parse tree node is
determined by the attribute value at parent and/or siblings node.

QA : Compiler Constructor 42

(b) …

(c) Intermediate Code is a form that serves as a connection between the front end
and back end of a compiler, representing the program during various
phases Intermediate code can translate the source program into the machine
program.

Types of intermediate code:

Linear form

Postfix notation

Three address code: A three address statement involves a maximum of three
references, consisting of two for operands and one for the result.

Tree

Syntax tree/Abstract Syntax Tree

Directed Acyclic Graph

QA : Compiler Constructor 43

QA : Compiler Constructor 44

(a)

Quadruples

Pros:

Statement movement possible

Quickly access value of temporary
variables

Cons:

Memory inefficient

Triples

Pros:

Memory efficient compared to
quadruples

Cons

Statement movement is not possible

(b)

QA : Compiler Constructor 45

(c)

QA : Compiler Constructor 46

(a)

Types of Code Optimization techniques

1. Machine Independent: This code optimization phase attempts to improve the
intermediate code to get better target code as the output.

a. Loop Optimization

QA : Compiler Constructor 47

b. Constant Folding: Replacing an expression that can be computed at compile
time by its value. Example: x=10+5 → x=15

c. Redundancy Elimination

d. Strength Reduction : Replacing an expensive operator by cheaper one.
Example: x/2 → x*0.5, A*2 → A << 1, x^2 → x*x

e. Algebraic simplification: Example : x+0=0+x=x, x-0=x

2. Machine Dependent: It is done after target code has been generated and when
the code is transformed according to the target machine architecture.

a. Register Allocation

b. Use of addressing modes

c. Peephole optimization

Loop Optimization: Loop optimization in code generation involves applying
techniques to make loops run more efficiently.

Frequency Reduction/Code Motion: A statement or expression which can be
moved outside the loop body without affecting the semantic of the program.

// Original

for (int i = 0; i < n; i++) {

 int temp = a + b;

 array[i] = temp * i;

}

// Optimized

int temp = a + b; // Moved o

for (int i = 0; i < n; i++) {

 array[i] = temp * i;

}

Loop Unrolling: Reducing the number of times comparison are made in the
loop.

for(i=0;i<10;i++){

printf(“Hi”);

}

for(i=0;i<10;i=i+2){

printf(“Hi”);

printf(“Hi”);

}

for(i=0;i<10;i=i+2){

printf(“Hi”);

 printf(“Hi”);

}

QA : Compiler Constructor 48

Loop jamming: Combine or merge the bodies of two loops.

for(i=0;i<5;i++){

a=i+5;

}

for(i=0;i<5;i++){

b=i+10;

}

for(i=0;i<5;i++){

a=i+5;

b=i+10;

}

(b)

Finding leaders in a basic block

The first three address instruction in the intermediate code is a leader

Any instruction that is the target of conditional or unconditional jumps is a leader

Any instruction that immediately follows a conditional and unconditional jumps is
a leader

(c)

Liveness analysis or register allocation is a machine dependent optimization
technique. The purpose of it is assigning multiple variable to a single register without

QA : Compiler Constructor 49

changing the program behavior.

﻿ is a live variable at statement ﻿ iff

1. There is a statement of ﻿ using ﻿

2. There is a path from ﻿ to ﻿

3. There is no new definition to ﻿ before ﻿

S-Attributed SDD L-Attributed SDD

A SDD that uses only synthesized
attribute is called S-attributed SDD.
Ex: A -> BCD {A.i=B.i; A.i=C.i;
A.i=D.i}

A SDD that uses both synthesized and inherited
attributes is called L-attributed SDD but each
inherited attribute is restricted to inherit from
parent or left siblings only.
Ex: A -> BCD {C.i=A.i; C.i=B.i}
Not C.i=D.i

Semantic actions are always placed
at right end of the production.

Semantic actions are placed anywhere on the
R.H.S of the production.

Attributes are evaluated with Bottom
up parsing.

Attributes are evaluated by traversing parse
tree using depth-first, left to right.

X S ​i

S ​j X

S ​i S ​j

X S ​j

QA : Compiler Constructor 50

(a)

The run-time environment in a compiler is the setup that created by the compiler to
manage program execution. It includes the structures and mechanisms that support
that function calls, variable storage, dynamic memory management and overall
resource management.

Allocation
Technique Description Use Case Advantages Limitations

Static
Allocation

- Fixed memory
at compile-time

Global and
static variables

No run-time
overhead

- No support for
dynamic sizes
- Doesn’t
support dynamic
data structure
- recursion not
supported

Stack
Allocation

LIFO allocation
for function
calls

Local variables,
function calls

- Efficient for
function calls
- Recursion
supported

- Limited to
static sizes
- Doesn’t
support dynamic
data structure

Heap Allocation Dynamic
memory at run-
time

Dynamic data
structures

- Flexible,
supports dynamic
sizes
- Allocation and
deallocation will

Requires careful
management

QA : Compiler Constructor 51

Allocation
Technique

Description Use Case Advantages Limitations

be done at
anytime based on
user requirement
- Recursion
supported

(b)

An activation tree is a conceptual tool used in compiler design and program analysis
to represent the sequence of function or procedure calls in a program, based on its
control follow.

Properties

Each node represents an activation of a procedure

The root shows the activation of the main function

The node for procedure x is the parent of node for procedure y if and only if the
control flows from x to procedure y.

An activation record is the contiguous block of storage that manages information
required by a single execution of a procedure.

Activation Record Units

Temporaries: The temporary values, such as those arising in the evaluation of
expression, are stored in the field for temporaries

Local data: The field for local data holds data that is local to an execution of a
procedure.

Save Machine States: The field for Saved Machine Status holds information
about the state of the machine just before the procedure is called.

Access Link: It refers to information in other activation records that is not local.
The main purpose of this is to access the data which is not present in the local
scope of the activation record. (In which outer function the function is defined)

Control Link: It refers to an activation record of the caller. They are used for
links and saved status. (Which function is called in the function)

Parameter List: The field for parameters list is used by the calling procedure
parameters to supply parameters to the called procedure.

QA : Compiler Constructor 52

Return value: The field for the return value is used by the called procedure to
return value to the calling procedure.

(c)

QA : Compiler Constructor 53

(a)

Peephole optimization is an optimization technique performed on a small set of
compiler-generated instructions, known as a peephole or window.

How the optimization performed

1. Identify the Peephole: Compiler finds the small sections of the generated code
that needs optimization.

2. Apply the Optimization rule: After identification, the compiler applies a
predefined set of optimization rules to the instruction in the peephole.

3. Evaluate the result: After applying the optimization rule, the compiler evaluates
the optimized code to check whether the changes make the code better than the
original in terms of speed, size or memory.

4. Repeat: The process is repeated by finding new peepholes and applying the
optimization rule.

(b)

QA : Compiler Constructor 54

QA : Compiler Constructor 55

Show Syntax tree and DAG for the expression a + a * (b – c) + (b – c) * d. Show
the benefits of DAG over syntax tree using three address code.

Benefits of using Directed Acyclic Graphs (DAGs) over syntax trees for generating
Three Address Code, in point form:

1. Redundancy Elimination: DAGs remove duplicate sub-expressions by sharing
common nodes, while syntax trees may repeat identical expressions.

2. Memory Efficiency: DAGs require less memory as they represent shared sub-
expressions with a single node, unlike syntax trees, which store duplicates.

3. Simplified Optimization: DAGs make optimizations (like constant folding and
common sub-expression elimination) easier, as shared computations are directly
represented.

QA : Compiler Constructor 56

4. Reduced Code Size: Code generation from a DAG can produce fewer
instructions since it avoids recomputing repeated expressions, whereas syntax
trees often generate redundant code.

5. Clear Evaluation Order: DAGs clarify dependency relationships, making it easier
to determine the correct order for computation, which is less straightforward
with syntax trees.

6. Improved Intermediate Representation: DAGs focus on computational
dependencies rather than structural syntax, streamlining transformations for
compiler optimizations.

