QA : Compiler Constructor

Created by Borhan
Last edited time @November 6, 2024 10:53 PM

Tag

Resources

o Best: https://www.youtube.com/playlist?
list=PLxCzCOWd7aiEKtKSIHYusizkESC42diyc

« Operator Precedence Function : https://www.youtube.com/watch?
v=2slHp7ny470&ab_channel=WITSolapur-ProfessionalLearningCommunity,

e https://www.tutorialspoint.com/construct-the-sir-parsing-table-for-the-
following-grammar-also-parse-the-input-string-a-b-plus-a

Slide 1-7

» Define language processing system? Briefly describe the phase of language
processing system.
The program which translate the program written in a programming language by the
user into an executable program is known as language processors.

o |tincludes all header files and also

Source Program [Example: filename.C] evaluates whether a macro
e The compiler takes the modified
Preprocessor .
- code as input and produces the
Modified S{yurcc Program [Example: filename.C] target code as output.
Compiler + The assembler takes the target code
i as input and produces real locatable
Target Assembly Program machine code as output.
Assembler o Linker or link editor is a program
that takes a collection of objects
Relocatable Machine Code [Example: filename.obj] (created by assemblers and

compilers) and combines them into

Loader/Linker | «——Library files
an executable program.

Relocatable Object files

Target l\{achinc Code [Example: filename. exe]

QA : Compiler Constructor

https://www.youtube.com/playlist?list=PLxCzCOWd7aiEKtKSIHYusizkESC42diyc
https://www.youtube.com/playlist?list=PLxCzCOWd7aiEKtKSIHYusizkESC42diyc
https://www.youtube.com/watch?v=2sIHp7ny47o&ab_channel=WITSolapur-ProfessionalLearningCommunity
https://www.youtube.com/watch?v=2sIHp7ny47o&ab_channel=WITSolapur-ProfessionalLearningCommunity
https://www.tutorialspoint.com/construct-the-slr-parsing-table-for-the-following-grammar-also-parse-the-input-string-a-b-plus-a
https://www.tutorialspoint.com/construct-the-slr-parsing-table-for-the-following-grammar-also-parse-the-input-string-a-b-plus-a

e The loader keeps the linked
program in the main memory.

« Why itis necessary to divide compilation process in to various phases?

Reason

Modularity

Error Detection

Optimization

Separation of Concerns

Efficiency

Maintainability

Support for Different
Languages

Explanation

Each phase handles a specific aspect of compilation, making the
process easier to manage and understand. This separation allows
for modifications in one phase without affecting others.

By breaking down the compilation into phases, errors can be
detected and reported at different stages, facilitating easier
debugging and correction of code.

Each phase can apply specific optimizations relevant to that stage,
improving overall performance without compromising the
functionality of the code.

Each phase addresses distinct tasks such as lexical analysis,
syntax analysis, semantic analysis, optimization, and code
generation, enhancing clarity and focus.

Phases can be designed to handle specific tasks in an efficient
manner, allowing for parallel processing and better resource
utilization.

A phased approach allows for easier updates and maintenance, as
changes can be localized to specific phases without requiring a
complete overhaul of the compiler.

Phases can be tailored to support multiple programming languages
by adjusting only the relevant parts of the compilation process,
making the compiler more versatile.

» Differentiate between context-free-grammar and regular expression.

Aspect Context-Free Grammar (CFG) Regular Expression (RE)
Language
Class Context-Free Languages (CFL) Regular Languages (RL)

More powerful; handles nested

Expressiveness

Limited; cannot handle nesting

structures
Parsin Requires complex parsers (e.g.,
d . a plexp (€9 Parsed with finite automata (simpler)
Complexity LL, LR)
U Syntax of programming Pattern matching in text, simple
sage —
9 languages, nested structures validations
Grammar Defined by production rules in Defined by a combination of literals,
Structure the form of A ~ o, where A is operators (e.g., *, +), and
a non-terminal and o is a metacharacters.

QA : Compiler Constructor

Aspect Context-Free Grammar (CFG) Regular Expression (RE)

sequence of terminals and/or
non-terminals.

Context Free Grammar is formal
grammar, the syntax or
structure of a formal language
can be described using
context-free grammar (CFG), a
type of formal grammar. The

grammar has four tuples:
(V,T,P,S). Regular expressions are sequences of

characters that define search patterns,

primarily used for string matching within
V - It is the collection of texts.
variables or non-terminal
symbols.
T - It is a set of terminals.
P - It is the production
rules that consist of both
terminals and non-terminals.
S - It is the starting
symbol.

« Write down a regular expression for fractional number and identifier. Draw the
-NFA for the regular expression (a|b)*bab.

digits »> [0 — 9]

letters > [A — Z]|[a — 2]

Fractional number > (+|—)?digits™ (.digits*)?(E(+|—)?digits™)?
Identifier > (letters|_)(letters|digits|_)*

« What is backtracking in top-down parsing?

In Top-Down Parsing with Backtracking, Parser will attempt multiple rules or
production to identify the match for input string by backtracking at every step of
derivation. So, if the applied production does not give the input string as needed, or
it does not match with the needed string, then it can undo that shift.

QA : Compiler Constructor

1. Start with the start symbol of the grammar

3. Repeat step 2 in each step and check the input

string

4. If mismatch, backtrack to previous step and

2. Apply the production rule for the non-terminal

apply the next alternative in production

5. Repeat step 4 until deriving the correct input

string.

S S

AN A N
N AN

back-tracking next-production

o Shortly describe scope management of symbol table with proper example

Symbol table is an important data structure created and maintained by compilers in
order to store information about the occurrence of various entities such as variable
names, function names, objects, classes, interfaces, etc. Symbol table is used by
both the analysis and the synthesis parts of a compiler.

A compiler maintains two types of symbol tables: a global symbol table which can
be accessed by all the procedures and scope symbol tables that are created for

each scope in the program.

Symbol Type Scope
pro_one proc global

Pro_two proc global

Symbol Type Scope Symbol Type
one_1 int proc para two_1 int
one_2 int proc para two_2 int

B int Proc para two_5 int

Scope
proc para
proc para

proc para

//’;‘\;; \

Symbol Type Scope Symbol Type Scope Symbol Type Scope

one_3 int inner one_6 int inner two_3

one_4 int | inner one_7 int inner L

int inner

int inner

first a symbol will be searched in the
current scope, i.e. current symbol
table.

if a name is found, then search is
completed, else it will be searched
in the parent symbol table until,

either the name is found or global
symbol table has been searched for
the name.

[https://www.tutorialspoint.com/compiler_design/compiler_design_symbol_table.htm]

« Define symbol table. Briefly describe four common error-recovery strategies
that can be implemented in the parser to deal with errors in the code

QA : Compiler Constructor

https://www.tutorialspoint.com/compiler_design/compiler_design_symbol_table.htm

Symbol table is an important data structure created and maintained by compilers in
order to store information about the occurrence of various entities such as variable
names, function names, objects, classes, interfaces, etc.

1. Panic Mode Recovery: The parser skips tokens until it finds a synchronization
point, like a semicolon or closing brace. This method prevents further errors by
resuming parsing from a safe point, often leading to simpler and faster error
recovery.

¢ In this method, successive characters from the input are removed one at a
time until a designated set of synchronizing tokens is found. Synchronizing
tokens are deli-meters such as ; or }

+ The advantage is that it's easy to implement and guarantees not to go into an
infinite loop

e The disadvantage is that a considerable amount of input is skipped without
checking it for additional errors

2. Phrase-Level Recovery: The parser makes local corrections, such as inserting,
deleting, or replacing tokens to continue parsing. This approach attempts to
correct errors by modifying nearby tokens, allowing the parser to proceed with
minimal disruption.

e In this method, when a parser encounters an error, it performs the necessary
correction on the remaining input so that the rest of the input statement
allows the parser to parse ahead.

e The correction can be deletion of extra semicolons, replacing the comma
with semicolons, or inserting a missing semicolon.

o While performing correction, utmost care should be taken for not going in an
infinite loop.

A disadvantage is that it finds it difficult to handle situations where the actual
error occurred before pointing of detection

3. Error Productions: The parser includes specific grammar rules (error
productions) to handle anticipated errors. When an error production matches an
input pattern, the parser can give a more descriptive error message and
proceed, aiding in the diagnosis of expected mistakes.

QA : Compiler Constructor

3. Error production

v If we have good knowledge of common errors that might be encountered, then we can
augment the grammar for the corresponding language with error productions that generate

the erroneous constructs.

v' If error production is used during parsing, we can generate appropriate error message to
indicate the erroneous construct that has been recognized in the input.

v" This method is extremely difficult to maintain, because if we change grammar then it
becomes necessary to change the corresponding productions.

= For Example: suppose the input string is abed

Grammar:

S2>A
A>aA|bA|a|b
B2 cd

4. Global Correction: This approach involves finding the minimal set of changes to
the input to make it syntactically correct, often using advanced algorithms. While
it provides the best possible correction, it's computationally expensive and
typically not used in real-time compilers

o The parser examines the whole program and tries to find out the closest
match for it which is error-free.

e The closest match program has less number of insertions, deletions, and
changes of tokens to recover from erroneous input.

» Due to high time and space complexity, this method is not implemented
practically

o Show the phases of compiler for the statement position :=initial + rate*60

QA : Compiler Constructor

position := initial +rate * 60

| lexical analyzer |

id, := idzi+ id; * 60

| syntax analyzer |

AN
Symbol Table id, y PN
1 position........ LR N
2 initial........ id; 60
3 rate........
4 [semantic analyzer |
idl/; \+
id,”
id3/in\ft0real

b

intermediate code generator

temp, := inttoreal(60)
temp; := id; * temp;
temp; := id; + temp,
id, 1= temp;

|

code optimizer

temp, := id; * 60.0
id 1= id; + tempy

l

code generator

MOVF ids, R, l
MULF #60.0, R,
MOVF id, ,R,
ADDF R,, R,
MOVF Ry, id,

+ What is input buffering? “Buffer pair with sentinels optimizes a code by
reducing the number of tests”- do you agree with the statement? Justify your
answer accordingly with an example.

QA : Compiler Constructor

= A buffer contains data that is stored for a short amount of time, typically in the
computer’s memory (RAM).
= The purpose of a buffer is to hold data right before it is used.

TILITTFRFRERE

n

+ +(1];

fp
Initial Configuration
Yes. The statement is true. Because, buffer pair contains the following code implements:
if (fiwd at end of first half) 4
reload second half’
set fivd to point to beginning of second half:
else if (fivd at end of second half) 4
reload first half:
set fid to point to beginning of first half

else & it takes two tests for each
fivd++; advance of the fwd pointer

‘Whereas, buffer pair with sentinels can optimize the above code as follows:
fwd++:
if (*fwwd =EOQOF)
i

L}
if (fiwd at end of first half)
else if (fivd at end of second half)

. 3t ‘
else /* end of input */
terminate processing.

]
i’

« How to recover error using panic mode error recovery in LL(1) parser? Explain.

It is based on the idea of skipping symbols on the input until a token in a selected set
of synchronizing tokens appears. The synchronizing set should be chosen so that
the parser recovers quickly from error that are likely to occur in practice .

Sr. No. . . B

E—TE E’ —+TE’e
1 SE Jid*+id$ Emror, skip) = T —>*FT’le
2 $E id*+ds idis in FIRST(E) F —(E)id
3 SE'T id*+ds
p R T Non- Input Symbol

i =
. i terminal i + » () S

5 $E'T'id id*+ids

E E—TE* E—TE® | synch synch
6 SE'T* 4ids

B’ B’ —+TE’ B’—¢ | E'—e
7 $SE'T'F* Hds

i T synch T—FT' | synch synch
8 $E'T'F +id$ Emor, M[F. +] = synch —FT*
9 $E'T +id$ F has been popped ™ T'—e | T'—*FT’ T =g | T'—e
10 $E +Hds F F—id synch synch F—(E) | syneh | synch
11 $SE'T+ +ids
12 $SE'T ids
13 SE'T'F 1ds
14 $E'T'id ids
15 SE'T’ $
16 SE’ $
17 $ s

o If the parser looks up the entry M[A, a] and finds that it is blank, then the input
symbol a is skipped.

« If the entry is synch, then the nonterminal on the top of the stack is popped in
an attempt to resume parsing.

QA : Compiler Constructor

 If a token on the top of the stack does not match the input symbol, then we
pop the token from the stack.

« Draw a transition diagram accepting both integer and floating-point numbers
with exponentiation.

I YUESUONSY (Tim erae——
LD:f}'erennate between single and muT;'4s Minuytes)
_Construct a DFA from the repy i —— P35 compiler.

One Pass Compiler Two Pass Compiler/Multi pass

It performs Translation in one pass It performs Translation in two pass

It scans the entire file only once. It requires two passes to scan the source file.
It doesn't generate intermediate code It generates intermediate code

Speed fast Speed slow

Time less Time more

Memory more memory less

not portable portable

e ¥

L au>wer e 10lowing questionr_m

' 1. | Differenti : 4
T ntiate between :
| ? |¢ r"nnc-i--nha - T\Tra r](J.ader and Ilnker.

QA : Compiler Constructor

assembler and compiler.

S. | Linker Loader

N

o.

1 A linker is an important utility program that takes A loader is a vital component of
the object files, produced by the assembler and an operating system that is
compiler, and other code to join them into a single | accountable for loading
executable file. programs and libraries.

2 It uses an input of object code produced by the It uses an input of executable files

produced by the linker.

3 The foremost purpose of a linker is to produce
executable files.

The foremost purpose of a loader
is to load executable files to
memory.

o Linker is used to join all the modules.

Loader is used to allocate the
address to executable files.

5 It is accountable for managing objects in the
program’s space.

It is accountable for setting up
references that are utilized in the
program.

] : a) “hf” IS & translator? Why dao WE e
b)Y Define the following
(1)

WO terms
Lexical analy zer

(1) SYIlax analv zeg

L) What is

a transition diagram

(a) Translator is a program that converts code written in one language into another
language. This process is essential in computing because it allows programs written

d translator

| xplain with examnle

in high-level, human-readable languages to be transformed into low-level machine

code, which the computer can execute.

(b)

The lexical analyzer, also known as a scanner or lexer, is the first phase of a
compiler. It reads the source code character by character and groups these

characters into meaningful sequences called tokens.

The

syntax analyzer, also known as the parser, is the second phase of a compiler. It

QA : Compiler Constructor

takes the tokens produced by the lexical analyzer and arranges them into a tree-like

structure called a parse tree or syntax tree

(c)

Transition diagram can be interpreted as a flowchart for an algorithm recognizing

a language.

Which is constructed by

e There is a node for each state in Q,

represented by the circle

e There is a directed edge from a
node p to node q labeled if

é(p,a) =p

o Starting state, there is an arrow with

no source

» Final states indicating by a double

circle

(Y |

1/l

D1 Differentiate among token, pattes

n and lexeme with examples.

Fig: Transition diagram

A token is a pair consisting of a token hame and an optional attribute value.
A pattern is a description of the
form that the lexemes of a token may take [or match].

A lexeme is a

sequence of characters in the source program that matches the pattern for a token
and is identified by the lexical analyzer as an instance of that token.

TOKEN INFORMAL DESCRIPTION SAMPLE LEXEMES
if characters i, f if
else characters e, 1, s, e else
comparison | < or > or <= or >= or == or != <=, I=
id letter followed by letters and digits | pi, score, D2
number any numeric constant 3.14159, 0, 6.02e23
literal anything but ", surrounded by "’s | "core dumped"

¢) What is viable prefix property? Explain with an example

QA : Compiler Constructor

n

Viable-Prefix Property

* The viable-prefix property of parsers allows early
l detection of syntax errors

* Goal: detection of an error as soon as possible without further

consu_ming unnecessary iﬂput

* How: detect an error as soon as the prefix of the mput

does not match a prefix of any string in the language

3 Error is
Error 1s detected here
detected here
refix for (:) Prefixy po 10 I = 170
—‘- - - g —
a) Write some common examples of syntactic errors.

e Errorin structure
e Missing operators
e Unbalanced parenthesis
int a
X = (3 +5; // missing closing parenthesis ')'

SIEI - SY // missing argument between '+' and '*'

=5 // semicolon is missing

<
I

(b)What are the points in the parsing process at which an operator-precedence
parser can discover syntactic errors?

There are two points in the parsing process at which an operator-precedence parser
can discover syntactic error:

» If no precedence relation holds between the terminal on top of the stack and the
current input.

QA : Compiler Constructor

12

¢l

If a handle has been found, but there is no production with this handle as a right
side.

What m th¢ l‘lllﬁ for panic m - " :._.__;" in ﬂle S}’Iltax MYSIS pnusc uL a Red ta

E—TE
Es_i__FrE-:'lB
T —FT’
T’—"*FT’lﬁ
F—(B)|id

v Panic mode recovery:

Rules:
1. If parser looks up entry M/, a/ and finds it blank then the input symbol « 1s

skipped.

2

If the entry 1s synch, then the nonterminal on top of the stack 1s popped in an
attempt to resume parsing.
3. If atoken on the top of the stack does not match the mput symbol, then we pop the

token from the stack

Sr. No.
RN - o
1 Jid*+id$ Emror, skip) =y e T —*FT’le
2 $E id*+ids idisin FIRST(E) F —(E)id
3 $E'T id*+ds
4 SE'T'F id*+ids |:,:;;1 - e)
id " i () $

5 $E'T'id id*+ids = o ETE | gneh | gmen
6 SE'T *Hds

E’ B'—TE’ E’—s | E'—s
4 SEFTES Ha T T synch T—FT' | synch | synch
8 $E'T'F +d$ Emor, M[F, +]= synch —FT*
[SE'T’ +1d$ Fhas been popped T T —g T' —*FT' T = | T'—¢
10 SE Hds$ F F—id synch synch F—(E) | synch | synch
11 SE'T+ +id$
12 SE'T ids
13 SE'T'F ids
14 $E'T'id ids
15 SE'T’
16 SE’
17 3

» Show the comparisons among error recovery strategies in a lexical analyzer
with examples.

QA : Compiler Constructor

13

Error Recovery

Description Example Pros Cons
Strategy
Skips tokens
until it reaches a
known, If an error
predefined occursin int x Simple and
- . Loss of tokens;
delimiter (e.g.,a = 10 y; , the quick recovery; .
. . . . may skip over
Panic Mode semicolon ; or analyzer skips avoids ;
. valid code
end of y; and cascading . .
unintentionally.
statement) to resumes after errors.
resume : B
processing from
a safe point.
Inserts an In int x = ;,
i Can lead to
artificial token the lexer may))
. Preserves inaccuracies by
to make the insert a]
Error Token . structure; often adding tokens
. input stream placeholder]
Insertion . used for minor that aren't part
valid and token (e.g., ©) .
. syntax errors. of the original
continue after = to .
. . input.
processing. continue.
Deletes In int x 16 = Eﬁ|C|§nt in Risks deleting
. rtain man
offending 20; , deleting certa too many
contexts; tokens; may
Error Token tokens to 160 can allow x
. reduces clutter alter the
Deletion resolve the error = 20; to be] .
by removing intended
and move parsed .
forward extraneous meaning of the
' correctly. tokens. code.

Transpose two
serial
characters

Replace a
character with
another
character

+ What do you mean by an ambiguous grammar? What are the main reasons of
ambiguity and how can ambiguity be eliminated?

Ambiguous grammar is a grammar which produces more than one parse tree for a
same string.

The main reasons:
¢ Precedence

o Associativity

QA : Compiler Constructor

o Dangling else
Remove:
* Rewriting the grammar

* Use ambiguous grammar with additional rules

———

b " Consider the following ambiéu’o -_ o

Stmt —if expr than stmt | if ¢ mt else stmt | other

: ¢ & .
Rewrite the above grammar to eliminatelambiguity|and then show the denvasggn foe
the anmnannd ennditinnal ctatement “if F1 then S1 else]fE_Z then S2 else i

* Rewrite the dangling else grammar as unambiguous grammar

* The grammar will be
Stmt = matchedstmt
| openstmt
matchedstmt - if expr then matchedstmt else matchedstmt
| other
openstmt -> if expr then stmt
| if expr then matchedstmt else openstmt

If E1 then if E2 then S1 else S2

UL el

b} Draw an NFA for the regular expression (a|b)*abb using €-transition.and cons
equivalent DFA for the expression. { N

QA : Compiler Constructor

21 Consider the following figure, find the language of it 7
. _

)

A—Ac|Sd|e {
Eliminate left recursion from the grammar.

X 'l‘aﬁ/'}'\c-‘(’m'"na—hc:\m
=2, joa: A Ac |]
> A — Ac \Pro;é\'- bd | &
{ 7 AT bdA € |

A 5 X | cd A &

Another one to remove Left recursion

QA : Compiler Constructor

£ E-o a7 1T
~>E = Tg!

El> +TE |
T—>;‘T¥F’\P
FT

QA : Compiler Constructor

What is left recursion of a grammar? Eliminate left recursion from the following grammar:
A—>BCla
B—>CA|Ab
C—>AB|CCla
Answer:
A Grammar G is left recursive Grammar if the non-terminal A in the derivation is

of the form:
A= Aa
Where « is a string of terminals and non-terminals.
Whenever the first symbol in the right hand side of the production is same as

the left hand side variable, then the grammar is said to be a left recursive

grammar.

i=1: nothing to do
i=2,j=1:B—>CA|4db
> B—>CA|BCb|ab
=imm B—=>CABg|lab By
By —> CbByle
i=3,j=1:C>AB|CC]|a
= C—>BCB|aB|CC|a
i=3,j=22C—>BCB|aB|CC|a
> C>CABRrCB|abByCB|aB|CC(C|a
=imm C—>abB, CBCylaB Cy|aCy
Cr>ABRrCBCgr|CCgrle

4. | Prove that the following grammar 1s not LL(1):
S > iEtSS’| a

S’—>eS|e

E—b

QA : Compiler Constructor

Ad>a FIRST(c) | FOLLOW(4)
Ambiguous grammar SIS 5 L e$
SH>iEtSS,|a - o :

Sp—>efS e S
S,—>eS|e Sioe 5 e
E—b E—>b b t
Error: duplicate table entry
a b e i t $
S| S>a | S>iEtss
"'\
Sp —> ¢
> e Des R
E E—>b @

S — (L)la

L—LS|S

(With check LL(1) or not)

[Used space as separator in FIRST and FOLLOW]

QA : Compiler Constructor

Calculate FIRST and Follow for the following grammar:

What are the conditions of LL(1) grammar? Prove that the following grammar is whether LL(1) or
not:

§—CCla

C—cCld

Answer:
Part 1:

* Agrammar G is LL(1) iff whenever -1 — « | ff are two distinct productions of G,
the following conditions hold:
v" Condition 1: For no terminal a, do both @ and f§ derive strings beginning with a.
(FIRST(a) (N FIRST(B) = ¢)
v Condition 2: At most one of @ and ff can derive empty string

¥v" Condition 3. If f# * & then « does not derive any string beginning with a

terminal in FOLLOW(.A)

(FIRST(a) (1 FOLLOW(A)=¢)

QA : Compiler Constructor

20

S sorsiviviUGLE UCLWEEN Single ang =2 MInytes)
2. | Construct a DFA fi TUlti-pas [
rom the, regyla S compiler.
¢ - r > - ing di
3. | What is left recursion of a pram—Pression (a|b)*abb using direct method.

. B bl — Avgmerted RE
CO 1 b)* e B —_ﬂ-)\g_gﬁ;a . Yprtie)

c‘r Sl /x—\

thﬁ?'{ L—bg\’m‘-\ \

Rles ger X0 SRR

sy | N A 25T J\(’k\ékw- S

7 { 7y -
By N M A | deere

| AR %%k{ | L,
G,L ﬁg_ 4' /)
%)4.\\?,\1 ‘1 ' e
o~
b

“ s
4 5
b5\ ¢

FF T

QA : Compiler Constructor

21

L_-- seraaivaudILdle UEL 1
= WEEN loader and linker.

|
' 2. | Construct a DFA from t : * usi i
3 Beninin rm ———wom the regular expression (bja)a(a+b)* using direct method.

. 381
WA, ks e

242 /"Q—)&{"'SV ol
/'ﬁk("\ \ |

2’1#9'\(2 J\ﬁ/ fkf
2 gy ARt s
v " - AS T
b 3 08 AR i
a1y
No o FuiodFos
1 n,
AL 1=}
o | o | 45,
O~] 4.5 . 6
19 5‘ *r;’ / c
H |l <4 |
I

QA : Compiler Constructor 22

Interpreter

Translates program one statement at a
time.

Interpreters usually take less amount of
time to analyze the source code.
However, the overall execution time is
comparatively slower than compilers.

No Object Code is generated, hence are

memory efficient.

Programming languages like JavaScript,
Python, Ruby use interpreters.

Compiler

Scans the entire program and translates it

as a whole into machine code.

Compilers usually take a large amount of
time to analyze the source code.
However, the overall execution time is
comparatively faster than interpreters.

Generates Object Code which further
requires linking, hence requires more
memory.

Programming languages like C, C++, Java
use compilers.

Slide 7-14

Develop an algorithm for constructing an SLR parsing table. Write down the
phases of a compiler.

Input : An augmented grammar G’

Output : The SLR parsing table functions action and goto for G’

QA : Compiler Constructor

23

Method
1. Construct C = {Ip I L}, the collection of sets of LR(0) ttems for G
2. State j 1s constructed from I;. The parsing functions for state / are deternuned as follows:
(a) If [A—orap] 1s mn L; and goto(li.a) = L then set action[i.a] to “shuft ;. Here a must be
terminal.
(b) If [A—a] 1s 1 [; then set action[i.a] to “reduce A—a” for all a n FOLLOW(A).
(c) If[S"—S] 1sin], then set action[i.$] to “accept”.

If any conflicting actions are generated by the above rules, we say grammar 1s not SLR(1).

3. The goto transions for state 7 are constructed for all non-terminals A uvsing the rule:
If goto(I;, A) = I, then goto[1.A] =}.

4. All entries not defined by rules (2) and (3) are made “error”

J. The mihal state of the parser 1s the one constructed from the set of tems contamng
[S'=.9].

Phases of a compiler
e Lexical Analysis
o Syntax Analysis
e Semantics Analysis
» Intermediate Code Generation
o Code Optimization

o Target Code Generation

What is precedence function? Show how to construct precedence function with
an example.

Precedence functions that map terminal symbols to integers.

Precedence relations between any two operators or symbols in the precedence table
can be converted to two precedence functions f & g that map terminals symbols to
integers.

e For each terminal a, create this symbol fa and ga
o if a<. b, mark edge from gb to fa

e ifa.>b, Mark an edge from fa to gb

QA : Compiler Constructor

Example: E— E+E | E*E | 1d
g

_.,
+la
J--':'.I
"&"l'\}" +
'\}'W.Wﬁﬁ

ALY I AR W

W
A
AV

Maximum Length for each Node

Id + 3 $
4 2 4 0
G 5 1 3 0

DIV L A R VY RIEE YULILAUILS. | LIS Wl EERAEIMIRLT S

Write down the conditions for a grammar to be an operator grammar. Convert the following grammar into
operator grammar: '

P — SRIS

R — bSRbS

S — WbS|W

W — L*W|L

L—id
Conditions for a grammar to be an P — SbP|SbS|S
operator grammar : R — bP|bS

e No R,H,S of any production has a € S — WosS|W

W — L+ W|L
* No two non-terminals are adjacent. L — id

We can remove R, because it is
unreachable.

Show the parsing steps for the string id * id+id using operator precedence parsing
technique (Note: You must include the precedence table in your answer).

QA : Compiler Constructor

25

" 4id _

+ < ‘ 7 \
T
stoek dnpet At/ Remrk
5 Tdxidt idd Wy 4
$ 1d ‘ FEIR| +id$
4% | daid ‘f‘ :7_"'"
$ ¢ ia Fid 4 fx 4
| 5* rid & Y+
|1 5 N A id‘# X 7 -1
\j.{d 4 ¢ oot
| ey + 49§
K 5 el ¥
A ccopt—
Another Question
id + $ STACK INPUT ACTION/REMARK
id - > > > $ id +id * id$ S<.id
+ <. > < > Sid +id * id$ id>. +
B <. > > > $ +id * id$ S<.+
S <. <. < - S+ id *id$ +<.1d
S+id *id$ id.>*
S+ *id$ +< ¥
St id$ *<d
S+ *id $ id.>$
$+* $ *>$
S+ S +>$
5 S accept
¢) The following grammar is operator-precedence and SLR (1). 5

S—s il e then S else
whileedo S
begin L end
N

L—=S:L|S

Construct error-correcting parsers of the operator-precedence and LR type for this grammar

» What do you mean by Shift-Reduce conflict? Explain with an example.

QA : Compiler Constructor

+ What do you mean by Reduce-Reduce conflict? Explain with an example.

Bl 5h'1,£-'[—ﬂaducma Rﬂrsrrﬂ . 6hidt Redoce ?ﬂﬂ&iﬂ% 5 o prROXSS O
Iﬁedudﬂa o gs-h,:‘m?]-_\-h M @stary %n‘m\ oA o oVl . |
' + 9 uvses @ &tack Yo +eld the ﬁrmmmﬁﬂ o oM WU:,((%QTLW @g‘l’fﬂ'ﬁ'ﬂ
»Hondles A c"t\ﬂ'l";d‘llﬂ e o eubsiing o groNINGTC 6{1"15'-'!1 n o)
.-ﬂl'lla-\'\‘q sentential - % —\‘i“l' ng:rc?\as o gkt Jond Sl

| S wirang)

D Teo s o condlels i SR |
D erdt-Redue Conlict Everty SR W‘S“f _;;“{Tii " 5: abole

s . A n .
corhgreton ouiing - o md b bRt St

Covmot deards — _ |
- Lhethent Yo 'Ea'hﬁj- A ot et 53*«&:4:3\ om —ths (Stack

O educe yne CoTOLONY herdle orh 18-

1 S 4 E-them 5|
4 £ thun & else <)
le2a VAL
R g - glm% @Hh Xoeen
D) Doduct — Reduce. Contlict Dmm@.f‘rw yo
.)Si'ﬂt&f\wcj—f‘rewﬁs and —tns et e 5ﬁm‘bc\ . —the PECEETL
i‘@mﬂb{iﬂ& 5 dondle O —0a. L "?Gﬂsm com .‘Ttﬂﬂlu -
e hendie by opplainy preasteeiion %@%m%;? possibility
t = € . 80 .
—+ o ne MO PrISIETNON Sor (Some
o ;f:'él(@?‘[_efdmjsl._ -:EZH&_ which ?mﬁtrchtm—\m (}E‘[ﬂﬁ*}nm

'- A ——
Cc = AT “; $ SREL—
A 26 d Redues 430 are
. &3
b e =

» Differentiate among LR parsers.
SLR Parser LALR Parser CLR Parser
Simple LR Lookahead LR Canonical LR

QA : Compiler Constructor

SLR Parser LALR Parser CLR Parser

It is very easy and cheap to It is also easy and cheap to It is expensive and difficult
implement. implement. to implement.

LALR and SLR have the same CLR Parser is the largest. As
size. As they have less number the number of states is very

SLR Parser is the smallest in

size.

of states. large.
Error detection is not Error detection is not Error detection can be done
immediate in SLR. immediate in LALR. immediately in CLR Parser.
SLR fails to produce a parsing It is intermediate in power It is very powerful and
table for a certain class of between SLR and CLR i.e., SLR works on a large class of
grammars. < LALR = CLR. grammar.
It requires less time and It requires more time and It also requires more time
space complexity. space complexity. and space complexity.

LR(1)

o Define handle with an example. What are the rules for constructing closure of
item sets and goto operation?

A handle is a substring of grammar

i i H Grammar: abbcde
symbol in a right-sentential form that . e brre——
matches a right hand side of a string. Aabelb adde Handle

aABe _ ———
2 ———

If 1" is a set of items for a grammar G
then closure of | is set of items

constructed | by two rules:

Goto Operation
o Initially, add every item in | to colure

(1

QA : Compiler Constructor

e If A— a- Bfisinclosure () and
B — ~is a production, then add

item B — -y to |, if itis not already
in existence.

o Apply this rule until no more new
items can be added to closure (I)

If there is a production A — « -
Xp then goto(A — a- XB,X) =
A—aX-p

Simply shifting of dot (.) one
position ahead over the grammar
symbol.

Therule A — o - XB isin | then the
same goto function can be written
as goto(l, B).

Goto (I, X), where | is a set of items
and X is a grammar symbol, is
defined as the closure of the set of
all items [A — aX - 8] such that

[A — a-Xf|isinl.

« Example: If | is the set of two items {E' >
E.], [E = E.+T]}, then goto(l, +) consists of

mmH44m

Sho xﬁho“ to parse the input @ * b + a using the following grammar and the parsing table:

+T | T -
: T - TF l‘F
F*|a|b
LR Parsing Table : -
Action

i +| =]al]b $ E
0 s4 | s5 1
1 s6 accept
2 r2 s4 | s5 r2
3 r4 |sB|rd|rd r4
4 6 |6 |r6|ré ré
5 G | r6|r6|rb ré
6 s4 | s5
7 r3 |s8|r3|r3 ra3
8 5 |r5|r5]|r5]
9 r s4 | s5 r 7

QA : Compiler Constructor

29

o
E— E4T () | STAKK INPuT | A fTON
E>T1T 0 o Oxb +b3 anid .
TTE) o 04 X btbe Reduced La_ 12w
T F 4 ®OF ¥ hbtbd At .
\::;() D oOF2x % b4bi Peduced b} ¥
F oFx, s (DOF bbb peducsd by ¥ E
Fo o9 oo T2 b $ <hif+-
Fob (g (90T 2b5 T4 Deducs o F2 &~
B ez Fy b3 Qoducsd by T5TP
(MDOT 2 RER | peduat o LT |
0S0E 1 + b4 YT
(A oELT o b ¢ o .
() oed tebs 4 .‘ﬁ’fMuM by F2 .
0)oEA+EF™ | 4 Ldued oy T>F |
LOS:)OE A $ ' ‘YCCJ?_?_].
Construct SLR parsing table for the follm-.;ih_gJ Q;mmmar.
E—E+T|T
T—T*F|F
F—(E)I1id

QA : Compiler Constructor

30

o \

__i % - . _P:;wp-t\ 1 E->T —11)
5 o | | e | ™| | ToT™FE — ()
5| w | elala| T2E) —D
Y e | ne Ty Mg \ — (&)
€ |55 £ > | % J

T (35 34 l 1y

I I O A

o | ey | =, —

a1 e e e ___—-____[g
1) Mg | N5 s s o] v —

QA : Compiler Constructor

______ TITaANRAAS RN BEAUDCTS,

g‘i'lsgz‘ct CLR parsing table for the following grammar:

C—cC
'C"‘d

I ON GOTO
: s>s,s b udhiside) STATE —— -
c
C2>cCS$ I
: §>CG 3y : c—)?cé,sl"_cl_.c-)cc"sil 0[S, S [
€308 L _—{c> 45
C>45 ¢ ¢ \ acoft
—| G|
§'>.58 d 1 |8
I, s>ccs - c>d,s Iy L |5
S?,‘f;';’;‘ i c—)c.g,c/d" 5 32 Sy Oy
o WED
¢ d 5 T,
c>d,dly b St 51
y - 7 T3
s>cc — 7, s T Ty
C>cC _ v, > | Vo
C>d "'Y'b 9 YQ,

:). _ Consi?uct SLR parsmg tab

.f

I —
E—-E+T|T_
T—TF|T
F—-F*|a|lb ~7

!

QA : Compiler Constructor

QA : Compiler Constructor

33

"+) Construct CLR parsing table for the follOWAE Efammer,

=" §— AaAb|BbBa
A—E
~B—e

pE
sf—\’g ' n 1g Iz
5= - AohAb,4 To . 2 " ﬂ
oy -DbPo. s [P S Dbk 4R SpbBo A s> B B
A e o - Boye o >
> rl b "
— S5 mbRe- 24
S RBbPo — Ny
B — e CO
ACTION
'_ & +=—
'5@\ > - 4
0 HLEN g |
1 : | Accept
2. 54
% ' Ly
5 T |
6 Sg . .
g T
9 My

QA : Compiler Constructor

34

Show an annotate parse tree for the input expressio
definition that converts binary to decimal with fraction:

101.101 according to the following syntax-directed

Production Semantic Rule
S—LiL: {S.dv = Li.dv+250)
L->LB {L.dv 2*L.dv+B.dv
L.nb = L.nb+B.nb}
L—B {L.dv = B.dv
L.nb = B.nb}
 B-0 ¥ {Bdv=0
B.nb = 1}
B—] (Bdv=1 \'\
B.nb =1}

o Contrast quadruples and triples with an example.

o Define indirect triple with an example.

Quadruples

It is a structure which consists of 4
fields namely operator, op1, op2 and

result.
op = operand

Pros:

QA : Compiler Constructor

Triples

This representation doesn't make use of
extra temporary variable to represent a

single operation.

Pros:

35

o Statement movement possible

e Quickly access value of temporary
variables

Cons:

o Memory inefficient

-(a*b)+(c*d+e)

= W R = O

Operstor | 0pt. | Og2 | Resut
* a b t

*

+

+

Indirect Triples

t
L
ty
t;

t;
d ts
e ty
Ly ts

This representation makes use of
pointer to the listing of all references to
computations which is made separately

and stored.

|___| Operator_

Pros

oW R = D

rator mm
* a b

*

+

(0)

C d
(2) e
1 @

(1)
(2)
(3)
(4)

« Statement movement possible

Cons

QA : Compiler Constructor

 Memory efficient compared to
quadruples

Cons

o Statement movement is not possible

L N =]

" Operator | Op1 | Op2
* a b

.)

* c d
+ (2) e
+ (1) (3)

36

e Two memory reference is required

“Dependency graph should not contain any cycle”-why? Show an annotate parse tree for the mnput
expression float a, b, ¢ according to the following syntax-directed definition that stores type information

into symbol table:
Production L_SeLantic Rule

D —> DI’ id {Add{l’pe(ld D].f_rpe)
D.type=D,.type]
D—-Tid {Addtype(id, Ttype)

D.type=T1type}
T—int T.type =int
T — char T type =char
T — float Ttype =float

A dependency graph is used to represent the flow of information among the
attributes in a parse tree.

A dependency graph cannot be cyclic because cycles, or circular dependencies,
make it impossible to evaluate the objects in the graph in a valid order.

A.a = f(Xx)

A.a
/A\\ Xx =f(Yy)
Xx Yy

Y.y =fl4d.a)

Error: cyclic dependence

QA : Compiler Constructor

D -*\jff . Z—;l}luaf'f

P

. Dlh}d PeT_:[’IQd:}
/1\
hdgpe-fet 4

N

TAfe-doar 4
‘ (<)
—:hcmcf

id

Co

Vewoble | Varusble
Tnoeme “T4pe ‘-
o

SR NP UGLTE ST L

ﬂ#\cﬂd—‘ |
b %E\oati-—
0 et

[What is backpatching? Write down three-address code for the following segment of C code:

c=10

do RN

{ o 7/

if (a<b) then o5

i 0

P [b

g) / S‘/ <

il Q it ,ge *L O+ <

} while (c<5) %; NB L R
L~ NP v

Backpatching is basically a process of fulfilling unspecified information.
Backpatching is a method to deal with jumps in the control flow constructs like if
statements, loop etc. in the intermediate code generation phase of the compiler.

QA : Compiler Constructor

:‘lll.

c=1

if (a <b) goto 4
goto 7
TI=x+1
x=TI1

goto 9
2=x-1

. x=T12

9. T3=c+1

10. c=T3

I1. if (c <35) goto 2
12.

N R W N

=

' Show an annotate parse tree for the input expression . ‘_—;;+ b * ¢ according to the following syntax-directed

definition that generates three address code:
Production

‘r

Semantic 'f{ule

S — id=F
E—> E+T

E-T
T T*F

T'—>F
F—id

{gen(id.name, E.place);}
{E.place=newtemp();
gen(E.place=E.place+T place);}
{ E.place=T place}
{T.place=newtemp();
gen(Tplace=T,.place*F.place);}
{ T.place=Fplace}
{ Eplace=id name}

QA : Compiler Constructor

39

i d-‘ﬂ(}'mr? =K

\

T plecn - Fg = X C

~x

E.pleq= o

T -poce= o Tplace- Ffl?]a@ "¢

- ploca- _ﬁ - Idaname = ¢
o pleas), l

[| e

1d.naemé = \ — _

A

b

« What do you mean by concrete and abstract syntax tree? Explain with
examples.

A parse tree is called a concrete syntax tree. A parse tree pictorially shows how the
start symbol of a grammar derives a string in the language.

An abstract syntax tree (AST) is defined by the compiler writer as a more convenient
intermediate representation. AST only contains semantics of the code.

E
/I +
/N {0

id *

T T * id RN
|| id id

id id
Concrete syntax tree Abstract syntax tree

QA : Compiler Constructor

—— T A e LSGRPAIRAREE VY RREE WANGRL R S E MO

| Show an annotate parse tree for the in
directed definition that generates three

Production

put expression @ + b * ¢ according to the following syntax-
address code: :

Sy e

Semantic Rule

E— E+T
E>T
T T¥F
T—>F
F—oid

{E.npt=mknode(E.nptr.+.T nptr
It ~Tapir} pu, Laptr)}

! Tnpir=
PP =mknode(Tnptr: * Fnppe)
3TI{PU‘-F;¥;H ? R)}

{Fnpiy =mknode(Null,id, Null)}

Eee T
//_N W—&A(ﬂ’

;T /' '\

o0
Tomgne @ -
\ - T =262 \
Frign=w@ \ 14
}'“\T“ - 2, CC)
1d \
\d
Q) ¢
5
7 WHat 1s a trans 1)
e sttion diagfam? | xplain with example o
a cline the following terms A/
(1) ‘nnlhml,\'.! translation /“/\{
) Inherited translation ‘
0) Give the parse tree a
¢ nd translations for the expression (4*7 + 19) * 2 a
Dol the l\llll ssion (4 19) * 2 accordin
X-directed translation scheme, in which E VAL is an integer-valued tras
P bsntinm o
] ,.,r,l, lion Semantic Action
E— EM 4 (E.VAL := EW. VAL + E® . VAL)
3 ol LV
. f digit (E.VAL = digit)
Here digit stands for any digit between 0 and 9
¢) What is intermediate code? What types of intermediate code are often used in compilers?

(a)

Synthesized: An attribute is said to be synthesized attribute if its parse tree node

value is determined by the attribute at child nodes.

Inherited: An attributed is said to be inherited attribute if its parse tree node is
determined by the attribute value at parent and/or siblings node.

QA : Compiler Constructor

a4

Production SemW inherited

D—>TL Lin)= T'type
T — int := ‘integer’
L—> id = I in synthesized

(b) ...

(c) Intermediate Code is a form that serves as a connection between the front end
and back end of a compiler, representing the program during various

phases Intermediate code can translate the source program into the machine
program.

Types of intermediate code:
Linear form
» Postfix notation

e Three address code: A three address statement involves a maximum of three
references, consisting of two for operands and one for the result.

Tree
e Syntax tree/Abstract Syntax Tree

o Directed Acyclic Graph

.] |I |
" §)+4Nna l

- Semantic rulcss
Productior

n

QA : Compiler Constructor 42

t1)*2 according to

. ‘E?\ Construct an annotate parse tree for the in :'L-‘Xpression F;H'}
the following syntax-directed definition: D

"Production Semantic ruies
L—En print(Elval)
é‘—>E| +T Eval = Evval + Tval
E—~T E.val = Tval
T—-T*F T.val = T.val * Fval
T—>F T.val = F.val
? - ElE) F.al := E.val
— digit val = digi
/-:’:'TI What ara H-.ngl.l:-ﬂ.‘._.._- L% % _a }‘:‘:v‘i.l ..- d]glt'lexval
) (9%5)+an - I
L@ kD)
E~Nvo\=45+19 -4
+

£| »'\q"'a"l.;qg F‘\—w\f&l? L
T.vol\=45 r?m-_ 0
1\:: valz4-5 d‘\ﬂﬁ‘?’ifl‘fﬂ' =9
C)
'f-_- \‘rﬂ'[-g .4 E-—

|
TiNol=9¥5:45

///H"““ _
T -Nol=9 F]:ivﬂllﬁ G
rl dgitevel> 5
'Vall': 9 (,15‘
|)
&16'4_1]8?{\.‘&'.?9
(%)

QA : Compiler Constructor

43

\ -~ M the o e 1 1 -
a Show the expression — (@ * b) + (¢ * o + ¢) into quadruples and tr
and disa

d disadvantages of quadruples and triples

Evaluate three address code for the following code usine ba Kpatc
i+)t
1 " - 4 I:
X -f‘-".-'.?l'j'r
Sum=sum=Xx
C eline DAG. Show a DAG for the following three address code
.
+}
~ .
a=ée i

(a)

" Operator | 0pt.| 0p2 | Result_| ERCCTTACAED
* b
= a b t a

0 0
1 - t, t, ! i (©)
2 * d
2 * c d ty ¢
3 + (2) e
3 + t; e ty
4 + (3
4 + t, ts ts
Triples
Quadruples
Pros:
* Memory efficient compared to
Pros:
quadruples
o Statement movement possible
Cons

e Quickly access value of temporary

. o Statement movement is not possible
variables

Cons:

e Memory inefficient

(b)

QA : Compiler Constructor

44

% 1) suM= O
| = O

0382?(‘ >41) oo 46
A g=-0

guﬁ (d21) gt €
6) 1= (+1

7 et S

) ta = 1x Me

%) fzw—éi%j

10) €= 48ty

A1) {4 = A

12) {5 - 4 [t2]

| %) SUM = Sum 3 ts
D d=dta
1’?)3011:35

A4

(c)

QA : Compiler Constructor

45

(a)
Types of Code Optimization techniques

1. Machine Independent: This code optimization phase attempts to improve the
intermediate code to get better target code as the output.

a. Loop Optimization

QA : Compiler Constructor

46

b. Constant Folding: Replacing an expression that can be computed at compile
time by its value. Example: x=10+5 > x=15

c. Redundancy Elimination

d. Strength Reduction : Replacing an expensive operator by cheaper one.
Example: x/2 = x*0.5, A*2 &> A << 1, x"2 = x*X

e. Algebraic simplification: Example : x+0=0+x=x, x-0=x

2. Machine Dependent: It is done after target code has been generated and when
the code is transformed according to the target machine architecture.

a. Register Allocation
b. Use of addressing modes

c. Peephole optimization

Loop Optimization: Loop optimization in code generation involves applying
techniques to make loops run more efficiently.

e Frequency Reduction/Code Motion: A statement or expression which can be
moved outside the loop body without affecting the semantic of the program.

// Original // Optimized

for (int i = 0; 1 < n; i++ int temp = a + b // Moved o
int temp = a + b for (int i = 0; 1 < n; i++
array|i| = temp * 1 array|i| = temp * 1

e Loop Unrolling: Reducing the number of times comparison are made in the

loop.
for(i=0;1i<10;i++ for(i=0;1i<10;i=i+2
printf(“Hi" printf(“Hi”

printf (“Hi"
for(i=0;i<10;i=i+2

printf(“Hi"
printf(“Hi"

QA : Compiler Constructor 47

e Loop jamming: Combine or merge the bodies of two loops.

for(1i=0;1i<5;1i++ for(1i=0;1<5;i++
a=i+5 a=i+5
b=i+10

for(1=0;1<5;1++
b=i+10

(b)
Finding leaders in a basic block
» The first three address instruction in the intermediate code is a leader
e Any instruction that is the target of conditional or unconditional jumps is a leader

» Any instruction that immediately follows a conditional and unconditional jumps is
a leader

¥ ayi=1 1P
%) §=4 1Po
x %) £y= B¥1
4= a1
E)—}r:pfi Xt f}),b
O+t~
T o[
2) J = 34
{‘l— (tj <:1’~T)‘3'T’m%‘

Ale) 1= 14
H))m’l—CIi 5) @t 2 !%4
)95

(c)

Liveness analysis or register allocation is a machine dependent optimization
technique. The purpose of it is assigning multiple variable to a single register without

QA : Compiler Constructor

48

changing the program behavior.

X is a live variable at statement S; iff

1. There is a statement of Sj using X

2. There is a path from S; to S

3. There is no new definition to X before S;

- T WAL

| £.val = digit.lexval

oy What_ are the differences between S
definition? Construct an annotate pars

Production

-aftributed and L-attributed syntax-directec
¢ tree for the input expression x = g + b * ¢

according to the following syntax-directed heﬁnjtion that generates three-address code:
i Semantic rules

S—id=E
E—-E+T

E—-T
T—T*F

T—F
F—id

{gen(id.name := E.place);}

{E.p e < newtemp() ;
gen(E.place:= E).place + T.place); }
E.place’= T.place

{T.place =newtemp() ;

gen(T place = Ti.place +F.place); }
T.place := F.place 1
F.place ;=id.name

\ 2k

©y What do you mean by concrete and abstract syntax trees? Explain with an example. é

S-Attributed SDD

A SDD that uses only synthesized
attribute is called S-attributed SDD.
Ex: A - BCD {A.i=B.i; A.i=C.j;
A.i=D.i}

Semantic actions are always placed
at right end of the production.

Attributes are evaluated with Bottom

L-Attributed SDD

A SDD that uses both synthesized and inherited
attributes is called L-attributed SDD but each
inherited attribute is restricted to inherit from
parent or left siblings only.

Ex: A - BCD {C.i=A.i; C.i=B.i}

Not C.i=D.i

Semantic actions are placed anywhere on the
R.H.S of the production.

Attributes are evaluated by traversing parse

up parsing. tree using depth-first, left to right.
8. a) What is run-time environment in compiler? Describe storage allocation techniquc‘
shortly. ' .
-, b) Explain Activation tree. Write down the name of its activation record units. \ e
¢) Consider the following program of Quicksort:

QA : Compiler Constructor

49

main()

1'“2 n;
rendaf‘pnv(

QUICRSOH (

quicksort(int m,
int i= part

quicksort(m
quicksort(i

}

)i
1,n);

int n) {
sgdon(m,n);
IM)
1,n);

Generate an activation tree for the given program.

(a)

The run-time environment in a compiler is the setup that created by the compiler to
manage program execution. It includes the structures and mechanisms that support
that function calls, variable storage, dynamic memory management and overall

resource management.

Allocation
Technique

Static
Allocation

Stack
Allocation

Heap Allocation

QA : Compiler Constructor

Description

- Fixed memory
at compile-time

LIFO allocation
for function
calls

Dynamic
memory at run-
time

Use Case

Global and
static variables

Local variables,
function calls

Dynamic data
structures

Advantages

No run-time
overhead

- Efficient for
function calls
- Recursion
supported

- Flexible,
supports dynamic
sizes

- Allocation and
deallocation will

Limitations

- No support for
dynamic sizes

- Doesn't
support dynamic
data structure

- recursion not
supported

- Limited to
static sizes

- Doesn't
support dynamic
data structure

Requires careful
management

50

Allocation

) Description Use Case Advantages Limitations
Technique

be done at
anytime based on
user requirement
- Recursion
supported

(b)

An activation tree is a conceptual tool used in compiler design and program analysis
to represent the sequence of function or procedure calls in a program, based on its
control follow.

Properties
» Each node represents an activation of a procedure
e The root shows the activation of the main function

e The node for procedure x is the parent of node for procedure y if and only if the
control flows from x to procedurey.

An activation record is the contiguous block of storage that manages information
required by a single execution of a procedure.

Activation Record Units

o Temporaries: The temporary values, such as those arising in the evaluation of
expression, are stored in the field for temporaries

o Local data: The field for local data holds data that is local to an execution of a
procedure.

e Save Machine States: The field for Saved Machine Status holds information
about the state of the machine just before the procedure is called.

e Access Link: It refers to information in other activation records that is not local.
The main purpose of this is to access the data which is not present in the local
scope of the activation record. (In which outer function the function is defined)

o Control Link: It refers to an activation record of the caller. They are used for
links and saved status. (Which function is called in the function)

o Parameter List: The field for parameters list is used by the calling procedure
parameters to supply parameters to the called procedure.

QA : Compiler Constructor

e Return value: The field for the return value is used by the called procedure to
return value to the calling procedure.

(c)
main
readarray() Quicksort ()
/ /:‘ar‘tltian reN
5 glament
Partition(1 S(6,4
artition(1 ,n) QS(1,4) Q(’;)

Partition return
3™ element

Partition(1 ,n) QS(1,2) QS(4,4)

)./ a) What is peephole optimization? wzmperfonned in the code
generation phase of a compiler?

“) Idenify bagicblocks and draw flow graph for

the following three-address code:

QA : Compiler Constructor

52

)

14)t6=88 * 5

\ 15) af16] = 1.0

b 10)i=i1+1
17)ifi<=10 goto 13

(a)

Peephole optimization is an optimization technique performed on a small set of
compiler-generated instructions, known as a peephole or window.

How the optimization performed

1. Identify the Peephole: Compiler finds the small sections of the generated code
that needs optimization.

2. Apply the Optimization rule: After identification, the compiler applies a
predefined set of optimization rules to the instruction in the peephole.

3. Evaluate the result: After applying the optimization rule, the compiler evaluates
the optimized code to check whether the changes make the code better than the
original in terms of speed, size or memory.

4. Repeat: The process is repeated by finding new peepholes and applying the
optimization rule.

(b)

QA : Compiler Constructor

53

H=tl+j
5)3=8*12 (= sy
\ eHA=0- -88

-' 7)a[t4]=00

9)ifj <= 10 goto 3

=141
\' 11;ifi<—10g0t02
\ =B i=17

=i-1
i?j—w =88%t5 |
15) a[t6] = 1.0 \ \%
16)i=i+1
17) if i <= 10 goto 1

¢) Consider the following flow graph: m@ i

1 P‘:q‘!‘}'
L s=ptg

e

:: Show the hve and dead vanables of.

QA : Compiler Constructor

54

7

L S

ﬂv
2 D[DL =T p
' »lolD v =L T L

!

e Show Syntax tree and DAG for the expressiona + a * (b -c) + (b —c) * d. Show
the benefits of DAG over syntax tree using three address code.

Benefits of using Directed Acyclic Graphs (DAGs) over syntax trees for generating
Three Address Code, in point form:

1. Redundancy Elimination: DAGs remove duplicate sub-expressions by sharing
common nodes, while syntax trees may repeat identical expressions.

2. Memory Efficiency: DAGs require less memory as they represent shared sub-
expressions with a single node, unlike syntax trees, which store duplicates.

3. Simplified Optimization: DAGs make optimizations (like constant folding and
common sub-expression elimination) easier, as shared computations are directly
represented.

QA : Compiler Constructor

55

4. Reduced Code Size: Code generation from a DAG can produce fewer
instructions since it avoids recomputing repeated expressions, whereas syntax
trees often generate redundant code.

5. Clear Evaluation Order: DAGs clarify dependency relationships, making it easier
to determine the correct order for computation, which is less straightforward
with syntax trees.

6. Improved Intermediate Representation: DAGs focus on computational
dependencies rather than structural syntax, streamlining transformations for
compiler optimizations.

QA : Compiler Constructor

56

