
Operating System 1

Operating System
Created by B Borhan

Last edited time

Tag Year 3 Term 1

Resources

https://medium.com/@algorhythm2411/operating-system-os-learning-resources-
515d685ad1c3#:~:text=Books,Galvin%2C%20and%20Greg%20Gagne

https://www.youtube.com/playlist?list=PLG9aCp4uE-s17rFjWM8KchGlffXgOzzVP

https://www.youtube.com/watch?
v=xw_OuOhjauw&list=PLmXKhU9FNesSFvj6gASuWmQd23Ul5omtD&index=1&t=1527s&ab_channel=KnowledgeGATE

https://www.poriyaan.in/paper/introduction-to-operating-systems-81/

Introduction & Basics of OS

Computer System Architecture
Computer System Architecture refers to the design and organization of the components of a computer system,
including the hardware and software architecture that allows the system to function effectively.

Components in Computer Architectures

Input Unit It takes data from the input devices, converts it into machine language and then loads it into the
computer system.

Storage Unit: Storage unit contains many computer components that are used to store data. It is traditionally
divided into primary storage and secondary storage.

Arithmetic Logic Unit: All the calculations related to the computer system are performed by the arithmetic logic
unit. It can perform operations like addition, subtraction, multiplication, division etc.

Control Unit: This unit controls all the other units of the computer system and so is known as its central nervous
system. It transfers data throughout the computer as required including from storage unit to central processing unit
and vice versa.

Output unit: This unit takes the processed data from the computer system and converts it into a format that can be
understood by the user. It then sends this data to output devices such as monitors, printers, or speakers.

Computer System Structure/Components: Four Components

November 11, 2024 922 PM

https://medium.com/@algorhythm2411/operating-system-os-learning-resources-515d685ad1c3#:~:text=Books,Galvin%2C%20and%20Greg%20Gagne
https://medium.com/@algorhythm2411/operating-system-os-learning-resources-515d685ad1c3#:~:text=Books,Galvin%2C%20and%20Greg%20Gagne
https://www.youtube.com/playlist?list=PLG9aCp4uE-s17rFjWM8KchGlffXgOzzVP
https://www.youtube.com/watch?v=xw_OuOhjauw&list=PLmXKhU9FNesSFvj6gASuWmQd23Ul5omtD&index=1&t=1527s&ab_channel=KnowledgeGATEbySanchitSir
https://www.youtube.com/watch?v=xw_OuOhjauw&list=PLmXKhU9FNesSFvj6gASuWmQd23Ul5omtD&index=1&t=1527s&ab_channel=KnowledgeGATEbySanchitSir
https://www.poriyaan.in/paper/introduction-to-operating-systems-81/

Operating System 2

Hardware

Operating System

Application system

Users

Operating System
An Operating system is a program that controls the execution of application programs and acts as an interface
between the user of a computer and the computer hardware.

More definition

Software abstracting hardware

Interface between user and hardware

Set of utilities to simplify application development/execution

Control program: controls the execution of user programs and operations of I/O devices

Acts like a government

Resource allocator: manages and allocates resources

Kernel: The one program running at all times

Components of OS

Kernel : Kernel is an active part of OS, running all times and can interact with the hardware.

Shell: Shell is a computer program that exposes an operating system's services to a human user or other
programs. The shell is nothing more than a program that carries the user typed commands or instructions from the
terminal and converts them into something that the kernel can understand.

GUI (graphical user interface) A graphical user interface GUI provides means for manipulating programs
graphically, by allowing for operations such as opening, closing, moving and resizing windows,

CLI (command-line interface) A command-line interface CLI is an operating system shell that uses
alphanumeric characters typed on a keyboard to provide instructions and data to the operating system,
interactively.

Functions of Operating Systems

Process Management

creation, deletion, suspension and resumption

Provision

process synchronization, process communication

Memory Management RAM

Keep track of which parts of memory are currently being used and by whom

Operating System 3

Decide which process to load when memory space becomes available

Allocate and deallocate memory space as needed

Secondary storage

Free space management

Storage allocation

Disk scheduling

File Management

File creation and deletion

Directory creation and deletion

Support of primitives for manipulating files and directories

Mapping files onto secondary storage

File backup

Networking Distribution systems)

Computation Speed up

Increased data availability

Enhanced reliability

I/O System Management

A buffer caching system

A general device-driver interface

Drivers for specific hardware devices

Protection System

Protection refers to a a mechanism for controlling access by programs, processes or users system and
resources

Distinguish between authorized and unauthorized usage

specify the controls to be imposed

provide a means of enforcement

Command-Interpreter System

Goals of Operating System

Convenience User-friendly)

User Interface

Ease of Use

Efficiency Best using all hardware)

Resource Utilization

Performance Optimization

Portability

Cross-platform Compatibility

Hardware Independence

Reliability

System Stability

Consistent Performance

Scalability Updating)

Operating System 4

System Upgrades

Expandable Capacity

Robustness Tackling error)

Error Detection

Error Recovery

This text representation outlines the main goals of an operating system and their sub-components, as shown in the
original diagram.

%%{init: {'theme': 'base', 'themeVariables': { 'fontSize': '16px' }}}%%

graph LR

 OS["Operating System Goals"]

 OS --> Convenience["Convenience (User-friendly)"]

 OS --> Efficiency["Efficiency (Best using all hardware)"]

 OS --> Portability["Portability"]

 OS --> Reliability["Reliability"]

 OS --> Scalability["Scalability (Updating)"]

 OS --> Robustness["Robustness (Tackling error)"]

 Convenience --> UI["User Interface"]

 Convenience --> EasyUse["Ease of Use"]

 Efficiency --> ResourceUtil["Resource Utilization"]

 Efficiency --> PerformanceOpt["Performance Optimization"]

 Portability --> CrossPlatform["Cross-platform Compatibility"]

 Portability --> HardwareIndep["Hardware Independence"]

 Reliability --> Stability["System Stability"]

 Reliability --> Consistency["Consistent Performance"]

 Scalability --> SysUpgrades["System Upgrades"]

 Scalability --> ExpandCapacity["Expandable Capacity"]

 Robustness --> ErrorDetection["Error Detection"]

 Robustness --> ErrorRecovery["Error Recovery"]

Operating System Services:

Program Execution

Load and execute programs

End or abort execution

I/O Operations

Device control

Data transfer

File System

File management

Directory management

Communications

Inter-Process Communication IPC

Network communication

Operating System 5

Error Detection

Hardware errors

Software errors

Resource Allocation

CPU allocation

Memory allocation

Accounting

Usage tracking

User billing

Protection

Access control

Data security

Types of OS

Uni-Programming OS

OS allows only one process to reside in main memory MM

Single process cannot keep CPU and I/O devices busy simultaneously

Not a good CPU utilization

Multi Programming OS

multiple processes to reside in MM

degree of multiprogramming : no. of running process in mm

degree of multiprogramming increase, CPU utilization increase but up to a certain limit.

Better CPU utilization than uni programming.

Concepts

All the jobs that enter the system are stored in the job pool. The operating system loads a set of jobs from
job pool into main memory and begins execute.

During execution, the job may have to wait for some task, such as I/O operation, to complete. In
multiprogramming system, the OS simply switches to another job and executes. When the job needs to
wait, the CPU is switched to another job and so on.

As long as, at least one job needs to execute.

Types

Preemptive : process can be forcefully taken out of the cpu

Non-preemptive: process runs of CPU will to wish

Either process terminates

or goes for I/O operation

Multi-tasking OS/Time-Sharing OS

Extension of multi-programming OS in which processes execute in round robin fashion

Fastest switching between multiple jobs to make processing faster

Allows multiple users to share computer system simultaneously

The users can interact with each job while it is running

Multi-User OS

Operating System 6

allows multiple users to access single system simultaneously

Multi-processing OS/Multiprocessor OS

known as parallel OS or tightly coupled OS

computer system has multiple CPUs/processors

have more than one processor in close communication that sharing the computer bus, the clock and sometimes
memory and peripheral devices.

It executes multiples job at the same time

Not in windows, available on Linux

Categories

Symmetric multiprocessing system: each processor runs an identical copy of the OS and these copies
communicate with one another as needed

Asymmetric Multiprocessing system: a processor is called master processor that controls other
processors called slave processor, establishes master-slave relationship, master processor schedules the
jobs and manages the memory for entire system

Types

Tightly coupled/shared memory :

All CPUʼs sharing single MM

Loosely coupled/distributed system:

Each CPUʼs has its own MM

Embedded OS

An OS for embedded computer systems

Designed for a specific purpose, to increase functionality and reliability for achieving a specific task

User interaction with OS is minimum

Distributed OS

the different machines are connected in a network and each machine has its own processor and own local
memory

OS of all machines work together

Types

Client-server system

Peer-to-peer system

Desktop System/Personal Computer System

maximizing user convenience and responsiveness

Operating System 7

it is neither multi-user nor multi tasking

Real-Time OS

Real time operating system RTOS are multi tasking OS, used in environments where a large number of events,
mostly external to the computer system, must be accepted and processed in a short time or within certain
deadlines

OS used for rocket launching

Every process has a deadline

Types

Hard RTOS Strict about deadlines, example: air bags on cars

Soft RTOS some relaxation in deadline, example : online games

Hand-held Device OS

OS used in hand-held devices

Android, IOS etc

System Call

A system call is a way for programs to interact with operating system.

provides an interface between the process and the OS

For example, for I/O a process involves a system call telling the operating system to read or write particular area
and this request is satisfied by the operating system.

Types of system call

Process Control

end, abort

load, execute

create process, terminate process

get process attributes, set process attributes

wait for time

wait event, signal event

allocate and free memory

Device Management

request device, release device

read, write, reposition

get/set device attributes

logically attach or detach devices

File management

create, delete file

open, close

read, write, reposition

get file attributes, set file attributes

Information maintenance

get/set time or date

get/set system data

get/set process attributes, file attributes, devices
attributes

Communications

create, delete communication connection

send, receive message

transfer status information

attach or detach remote device

Dual Modes of Operation

Used to implement protection

User mode (mode bit 1

Kernel/System/Supervisor/Privileged Mode (mode bit=0

Operating System 8

Questions

What are the computer system architecture? Briefly describe multiprocessor system.

Define Operating system? What are the services of operating system?

What are the Operating system services? Briefly describe with the figure

Define Time sharing and Real-Time operating systems.

Write the fundamental approaches for users to interface with the operating system and explain them briefly.

What is system call? Mention the name of the system calls involved in Device management.

What is system call? Mention different types of system call.

What does the kernel do when a context switch occurs?

In what ways is the modular kernel approach similar to the layered approach? In what ways does it differ from a
layered approach?

What is meant by context switching? explain with the proper figure.

 What is the advantage of many-to-many relationships between user threads and kernel threads over other
relationship models?

Process

What are the differences between a process and a program? Explain.

A process is sequential program in execution. A process defines the fundamental unit of computation for the
computer. Components of process are :

� Object Program

� Data

� Resources

� Status of the process execution

Object program i.e. code to be executed. Data is used for
executing the program. While executing the program, it
may require some resources. Last component is used for
verifying the status of the process execution. A process
can run to completion only when all requested resources
have been allocated to the process.

Process Program Code) Running environment (operands and other information)

Aspect Program Process

Nature Static object Dynamic object

Storage Location Resides in secondary storage (e.g., hard drive) Resides in main memory RAM

Execution Inactive until executed Active, executing at any given time

Lifetime Span time is unlimited Span time is limited (ends when execution completes)

Operating System 9

Aspect Program Process

Entity Type Passive entity (just a set of instructions) Active entity (involves execution)

Representation Expressed in a programming language Expressed in assembly or machine language (for execution)

Process as a Data Structure

Definition : code or instruction or program

Representation/Implementation :

How process stored in memory

Operations

Create Resource Allocation)

Schedule, run

wait/block

Suspend, resume

Terminate Resource Deallocation)

Attributes

PID process id, uniquely identify each process

PC Program counter

GPR General process register

Lists of Device

Type

Size

Memory Limits

Priority

State

List of files

These attributes are maintained by a DS called PCB

Operating System 10

PCB
Draw the block diagram of the Process Control Block PCB.

Mention five components of a process's PCB.

A Process Control Block PCB is a data structure used by the operating system to store information about a specific
process.

Each process contains the process control block PCB or process descriptor.

PCB is the data structure used by the OS.

OS groups all information that needs about a particular process.

Components of PCB

Pointer: Pointer points to another PCB to maintain the scheduling list.

Process state

Program Counter The address of the next instruction

CPU Registers Registers like AC, GPR, IR etc.

CPU Scheduling information: process priority, pointer to scheduling
queues and any other scheduling parameters.

Memory-management information: base and limit register, page or
segments table etc.

Accounting information: amount of CPU & real time uses, time limits,
account numbers, job or process numbers.

I/O Status information: List of I/O Devices allocated to the process, a
list of open files etc.

Context

What is context switching?

Explain context switching with an appropriate figure.

The content of PCB in a process are collectively known as “Contextˮ of that process

Context switching :

Context Switching is the process by which an operating system saves the state of a currently running process or
thread and loads the state of a different process or thread.

Stop a running process and start another

Context switch is done by dispatchers

Context switch time is pure overhead.

Operating System 11

When the scheduler switches the CPU from executing one process to executing another, the context switcher
saves the content of all processor registers for the process being removed from the CPU in its process being
removed from the CPU in its process descriptor

Work

Context Save

Context Load

Process States
Draw the process state diagram and label its states.

Discuss the various process states.

When process executes, it changes state. Process state is defined as the current activity of the process.

New: A process that just been created.

Ready: A process said to be ready if it needs a CPU to execute. A ready process is runnable but temporarily stopped
running to let another process run.

Running: A process that is currently being executed/ a process which has the CPU to run. A running process
possesses all the resources needed for its execution, including the processor.

Terminated : The process has finished execution.

Blocked/Waiting : A process which is waiting for some event to happen such that as an I/O completion before it can
proceed.

Transition

New to ready : when process is admitted by OS, done by OS

Ready to running: when process is dispatched to CPU, done by OS

Operating System 12

Running to Terminated: When a process is completed, done by Process

Running to blocked: When a process goes for a IO or event, done by process

Running to read When a process is preempted, done by OS

Blocked to ready When a process completes IO or event, done by OS

Process states Non-preemptive

CPU vs IO Bound Process

CPU Bound: If the process is intensive in terms of CPU operations, spends more time doing computations, few
very long CPU bursts

IO Bound:: If the process is intensive in terms of IO Operations, spends more time doing I/O than computations
,many short CPU bursts

Process Scheduling
The scheduling mechanism is the part of the process manager that handles the removal of the running process from
the CPU and the selection of another process basis of particular strategy.

Need for better resource utilization

Process Queues

Job Queue All process in the system which are entered to the system as new processes,

Ready queue: Processes that are residing in MM and are ready and waiting to execute by CPU. This queue is
stored as a linked list. Each PCB includes a pointer field that points to the next PCB in ready queue.

Device queue: process are waiting for a specific i/o device, each device has its own device queue

Operating System 13

Schedulers
What are the schedulers in an operating system?

Differentiate between short-term and long-term schedulers.

A scheduler is a decision maker that selects the processes from one scheduling queue to another or allocates CPU for
execution.

Types of schedulers

Aspect Long Term Scheduler Short Term Scheduler Medium Term Scheduler

Function Job scheduler CPU scheduler Swapping scheduler

Speed Slower than short-term scheduler Very fast Moderate speed, between long
and short-term

Control over
Multiprogramming

Controls the degree of
multiprogramming

Minimal control over
multiprogramming

Reduces the degree of
multiprogramming

Presence in Time-
Sharing Systems

Usually absent or minimal Minimal role Commonly used

Selection Chooses processes from a pool and
loads them into memory for execution

Selects processes ready for
CPU execution

Reintroduces a process into
memory for resumed execution

Process State Transition Transitions processes from New to
Ready state

Transitions processes from
Ready to Running state

Does not directly involve state
transitions

Process Mix Selects a balanced mix of I/O-bound
and CPU-bound processes

Frequently selects a process
for the CPU

-

Long-term-scheduler (job) :

selects processes from discs and loads them into Main memory

new state to ready state

resource allocation happens

Short term scheduler CPU

selects one of all ready processes to run on CPU

Mid-term Scheduler Medium-term)

Does Swapping

Swap out : suspended state

Operating System 14

Operations
What are the reasons that a parent process may terminate the execution of one of its child processes?

UNIX Examples

fork Creates a new process.

exec Replaces process memory with a new program after fork .

 Following are the resources for terminating the child process by parent process.

� The task given to the child is no longer required.

� Child has exceeded its usage of some of the resources that it has been allocated.

� Operating system does not allow a child to continue if its parent terminates.

CPU Scheduling
Explain the difference between preemptive and non-preemptive scheduling.

Describe how to address the starvation problem in a priority scheduling algorithm.

Explain the effect of increasing or decreasing the time quantum to an arbitrary small number for the Round-
Robin scheduling algorithm with a suitable example

What are the scheduling criteria?

Draw Gantt charts illustrating FCFS, preemptive SJF, non-preemptive priority, and Round-Robin scheduling.

CPU scheduling refers to the switching between processes that are being executed. It forms the basis of
multiprogrammed systems.

Operating System 15

Scheduling Criteria

CPU Utilization (max) Keeping the CPU busy

Throughput (max) : no. processes that completes their execution per time unit

Turnaround time (min) : amount of time to execute a process

Waiting time (min): amount of time process has been waiting in the ready queue

Response time:(min) amount of time it takes from when a request was submitted until the first response produced

Between the parenthesis Optimization Criteria]

CPU Types

Preemptive

Non-preemptive

Aspect Preemptive Scheduling Non-Preemptive Scheduling

Definition
The CPU can be taken away from a running process
before it finishes its execution.

Once a process starts executing, it runs to completion or
until it voluntarily releases the CPU.

Control
The operating system has control and can interrupt
processes. The process controls when it gives up the CPU.

Interruptions
A process can be interrupted by the scheduler to give
CPU time to another process.

A process cannot be interrupted; it must finish its
execution.

Context
Switching Frequent context switching due to preemption.

Less frequent context switching as processes are not
preempted.

Example Round-robin, Shortest Remaining Time First SRTF.
First-Come, First-Served FCFS, Priority Scheduling (non-
preemptive).

Advantages
Better responsiveness and fairness in handling
processes.

Simpler to implement, no need for frequent context
switching.

Disadvantages Increased overhead due to context switching.
Can lead to poor response times, especially with long-
running processes.

Note Every process has no any I/O operation. Assumption)]

Algorithms

FCFS First Come First Serve

Criteria Arrival Time AT

Tie-breaker Smaller process id first

Type: Non-preemptive

Gannt Chart:

From when to when

always start from 0

Disadvantages

Convoy Effect : If a large process is scheduled first than it slows down systemʼs performance.

Operating System 16

SJF Shortest Job First)

Criteria : Smallest Burst Time process first

Tie-breaker: FCFS Arrival Time)

Type: Non-preemptive /preemptive

Advantages

Less response time

Disadvantages

Not practical

Starvation : indefinite waiting

No fairness

SRTF Shortest Remaining Time First)\

Criteria : Burst Time

Operating System 17

Tie-breaker FCFS

Type: Preempted

Tricks

Write the process, BT by side

Disadvantages

Not practical

Starvation : indefinite waiting

No fairness

HRRN Highest Response Ratio Next

Objective: Not only favors short jobs but decreases the WT of longer jobs

Criteria: Response Ration High to low)

Tie-braker: BT

Type: Non-preemptive

 , W wait time, SService/Burst TimeRR =

S
W+S

Operating System 18

Priority Based Scheduling

Criteria : Priority

Tie- breaker: FCFS

Type: Non-preemptive, Preemptive both

Disadvantages

Starvation: If higher priority processes keep arriving then low priority processes may wait untill indefinite
time

Priority

Type

Static Fixed

Dynamic: may increase or decrease

Non preemptive

Operating System 19

Preemptive

Round-Robin

Objective:

provides instructiveness

fairness

Criteria : AT Q, Q Time Quantum

Tie-breaker: Process ID

Type: Preemptive

Operating System 20

Memory Management
What is the fragmentation problem in memory management? Define internal and external fragmentation.

Describe first-fit, best-fit, and worst-fit strategies with examples.

Explain swapping and describe the standard swapping process.

What is paging? Explain paging with an example.

Discuss the paging method and show with an example

Define paging method and demonstrate with an example.

Memory Management is the process of efficiently handling the computerʼs memory, which includes the allocation,
deallocation and organization of memory during execution.

It increases utilizing of CPU by increasing degree of multiprogramming

Protect process memory from unauthorized access and prevent process interfering with each other.

Allocation and deallocation. process isolation, efficient memory use, memory sharing, memory hierarchy
management c

Binding of Instruction Data to Memory

� Compiler Time : If it is known at compiler time where the process will reside in memory, then absolute code can be
generated.

� Load time : It is the time taken to link all related program file and load into the main memory. It must generate
relocatable code if memory location is not known at compiler time.

� Execution: Time taken to execute the program by processor. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run time.

Technique to optimize use and increase system efficiency

� Dynamic Loading

a� a programs code and data are loaded into memory only when they are needed during execution

b� improve memory utilization, save memory, No OS supper required

� Dynamic Linking

a� postpones the linking of libraries to a program until runtime, instead of linking them at compiler time

b� Small piece of code → stub, used to find library in memory

c� Save memory by sharing common libraries, Need support from OS

� Overlays

a� process is larger than available memory → the necessary parts (overlay) are loaded into memory while other
parts are swapped in/out

b� designed and managed by programmer. no need of OS support

� Swapping

a� temporality moves a process (or a part) out of memory RAM to secondary storage to free up memory for
others

b� when the process is needed again it is swapped back into memory

c� Process Program Execution Memory Full or Process Waiting Swapping out Roll out) a selected process
MM to secondary (swap space) Swapping In the process needs CPU or ready for execution, secondary to
MM Process resumption, process resume its execution from where it left of

Operating System 21

Memory Management Technique

� Contiguous

each process in the system is assigned in a single continuous of memory during its execution

Operating System 22

Types

Single Partition Scheme

Multiple Partitions Scheme : main memory is divided into a number of fixed-sized partitions where each
partition should contain only one process

Feature Multiple Fixed Partitions Multiple Variable Partitions

Partition Size
Fixed partition sizes defined during system
generation.

Variable partition sizes based on process
requirements.

Memory Allocation
Any process can fit into an available partition
if its size ≤ partition size.

Processes are allocated exactly the memory they
require.

Efficiency of Memory
Usage Inefficient due to internal fragmentation. More efficient, with no internal fragmentation.

Max Active Processes Fixed, limited by the number of partitions. Flexible, limited by the available memory.

Swapping
Processes can be swapped in and out of
partitions.

Compaction is needed to manage memory,
especially due to external fragmentation.

Operating System
Overhead Low overhead. Higher overhead due to memory compaction.

External
Fragmentation

Does not occur, as memory is statically
partitioned.

Can occur, requiring compaction to manage free
memory.

Implementation
Complexity Simple and easy to implement.

More complex due to dynamic memory allocation
and compaction.

Fragmentation: a situation in memory management when memory space is used inefficiently, leading to wasted
or unusable memory

Types

Feature Internal Fragmentation External Fragmentation

Definition
Wasted memory within a partition that is not utilized by a
process.

Wasted memory outside the allocated
memory regions, leaving gaps between
blocks.

Cause
Occurs when a process is allocated more memory than it
needs, causing unused space within the partition.

Occurs when free memory is scattered in
small blocks, but no contiguous space is
large enough for a new process.

Location of
Wasted Space

Inside the allocated partition. Between allocated memory blocks.

Memory
Allocation

Memory is allocated in fixed-size blocks, leading to unused
space if the process is smaller than the block size.

Memory is allocated dynamically, and free
space is fragmented.

Impact on
Performance

Leads to inefficient use of memory, but doesn't require extra
work to manage.

Causes difficulty in allocating memory,
potentially leading to delays or inability to
allocate memory even if total free space is
sufficient.

Management
Complexity

Simple to manage; internal fragmentation is a result of fixed-
size partitions.

More complex to manage; requires
techniques like compaction to reduce
fragmentation.

Operating System 23

Feature Internal Fragmentation External Fragmentation

Solution
Cannot be fully avoided, but can be minimized by using
smaller partition sizes.

Can be resolved by techniques such as
memory compaction or using more
efficient allocation strategies.

Example
A partition of 1 KB allocated to a process requiring 900 bytes
results in 100 bytes of internal fragmentation.

Free memory blocks of 100 KB, 50 KB, and
25 KB scattered across memory might
prevent allocation of a 120 KB process.

Advantages
 Simple to manage.
 Low overhead in allocation.
 Memory is allocated quickly and predictably.

 Flexible memory usage, as memory can
be allocated dynamically.
 No need to allocate more space than
required by the process.

Disadvantages

 Inefficient use of memory due to unused space within
partitions.
Can lead to significant wastage if partitions are large and
processes are smaller.

 Inefficient memory use due to scattered
free space.
 May cause memory allocation failures
even when there is sufficient total free
memory.
 Requires memory compaction, which
adds overhead.

Partition Selection Policy : request memory → the OS must decide which free memory partition to allocate →
guided by Partition Selection Policy

First Fit: memory manager scans the list of free block from beginning → allocate the first block that is big
enough

Next Fit : starts from the last block allocated → the current process allocated to the next block which is big
enough

Best Fit : searches the entire list of blocks → find the smallest block which is big enough for the process

Worst fit: searches the entire list of blocks→ find the largest block that is big enough size than the size of
process

� Non contiguous: it is allowed to store the processes in noncontiguous memory locations.

Types

i� Paging

Frames : Main memory is divided into a number of equal size blocks

Pages : Each process divided into number of equal size block of the same length as frames

From logical to physical addresses

CPU generated/logical address : page number and page offset

Page table contains the base address of each page in physical memory

Logical address space and page size addressing units, then (m-n) bits = page number and n bits
= page offset.

Example

Logical memory 4B ,
Page size =

Logical address = , 2 bits

Page number bit =

Offset =

Primary memory 8 B

Frame size =

Physical address = bits

Frame number bit =

2m 2n

22 m = 2

2 ,n =1 1

22

m − n = 2 − 1 = 1

n = 1

2 ,m =3 3

2 ,n =1 1

2 =3 3

m − n = 2

Operating System 24

Offset = n 1

Find physical address using decimal value

Physical address = (frame number * frame size) + offset

ii� Segmentation : Segmentation is a memory management technique that divides a process memory into
variable sized blocks called segments, based on the logical division of program. Segments are logical unit such
as function, array, method etc.

base : contains the starting physical address

limit : specifies the length of the segment

STBR segment table base register , points to the segment tableʼs location in memory

STLR segment table length register, indicates number of segments used by a program

 A logical-address space is a collection of segments.. Logical address consists of a two tuple: <segment-
number, offset>

The segment number is used as an index into the segment table. The offset d of the logical address must be
between 0 and the segment limit

Operating System 25

Feature Paging Segmentation

Definition
A memory management technique that divides the
process into fixed-sized blocks, called pages, which are
mapped to physical memory frames.

A memory management technique that divides the
process into variable-sized segments, each
representing logical units of the program.

Division of
Program

Divides the program into fixed-sized pages. Divides the program into variable-sized segments.

Responsibility Managed by the Operating System. Managed by the Compiler.

Size
Determination

Page size is fixed and determined by hardware. Segment size varies and is determined by the user.

Speed Generally faster than segmentation. Generally slower than paging.

Fragmentation
Type

Internal Fragmentation. External Fragmentation.

Mapping Table Uses a Page Table to map logical pages to physical
memory frames.

Uses a Segment Table with base and limit addresses
for each segment.

File System
What are the file access methods? Briefly describe them.

Explain the difference between sequential and direct file access methods.

Discuss file sharing methods.

In Unix, Linux, and Windows file systems, describe the purpose of multiple timestamps associated with files.

A file system is a method and data structure that an operating system uses to manage, organize files on storage
devices.

File system consists of two parts

collection of files

a directory structure

A file is a collection of related information that is recorded on secondary storage. A file is a collection of similar
record.

Common terms related to file : field (basic element of data), record (collection of related fields), file (collection of
similar records), database(collection of related data)

File attributes : name, identifier , type, location, size, protection, time, date and user identification

File operation: read, write, create, reposition, delete, truncating

Access Method: File access method defines the way processes read and write files.

Operating System 26

� Sequential Access Method: Simple method, the information in a file is accessed sequentially one record after
another

a� a process could read all the records in a file in order, starting at the beginning. It cannot skip any records
and cannot read out of order

b� Batch Application uses. Sequential file organization easily stored on tape and hard disk.

c� Disadvantages: poor performance, more efficient search technique is required

� Direct Access method: Random Access Method, allows a user to position the read/write mark before reading
or writing.

a� It provides accessing the records directly. It is based on hard disk that is a direct access device. It allows
random access of any file block.

b� Each records has its own address on the file with by help of which it can be directly accessed for reading or
writing. This feature is used by editors.

c� There is no restriction on the order of reading or writing for a direct access file. OS support is not needed.

d� Disadvantages: Poor utilization of i/o device, consumes CPU times for address calculation

� Index Sequential Access Extra)

a� it is a combination of direct and sequential access method.

Aspect Sequential Access Direct Access

Access Pattern Data is accessed in a fixed, linear sequence. Data can be accessed in any order.

Navigation Step-by-step; must go through preceding data. Can jump directly to any data block.

Efficiency Efficient for linear access (e.g., reading from start to
end).

Efficient for quick access to specific data points.

Complexity Simple to implement. More complex to implement.

Best Use Case Text files, logs, sequential data processing. Databases, index files, applications needing random
access.

Advantage Minimal overhead, straightforward access. Fast access to specific data.

Disadvantage Inefficient for random access. Less efficient for reading large files sequentially.

Directory: A directory is an object that contains the names of file system objects.

Operating System 27

Single-Level Directory: simplest, files contained in the same directory, easy to support and understand,
limitations when number of files increases, files must have unique name

Two-level directory: each user has own user file directory UFD, each UFD has similar structure, when a user
job starts, master file directory is searched, MFD is indexed by username

when user refers to a particular file, only his own UFD is searched

to create, delete a file for a user, the OS confines its search to the local UFD

Tree-structured directories: powerful and flexible approach to organize files in hierarchical , there is a master
directory which has under it a number of user directories, each of users may have sub directories

Acyclic-graph directories : shares subdirectories and subordinates files, same file or subdirectory may be in
two different directories,

a shared file is not the same as two copies of the file, with two copies each programmer can view the copy
rather than the original.. but if one changes, it wonʼt change another in the others copy

Operating System 28

File Allocation: the strategies employed by computer OS for the efficient distributing of storage space on disks or
others

Aspect Contiguous File Allocation Linked File Allocation Indexed File Allocation

Storage Pattern Files stored in a single, continuous
block

Files stored in non-contiguous
blocks with pointers

Files stored in non-contiguous blocks
with an index block

Access Speed Fast access (sequential) Slower access (following
pointers)

Fast access (uses index block)

Fragmentation Prone to fragmentation Low fragmentation Low fragmentation

File Size
Flexibility

Limited by contiguous free space Flexible, any size Flexible, any size

Disk Space
Efficiency

Efficient for continuous storage Less efficient due to pointer
storage

Slightly less efficient due to index block

Risk of Data Loss Low, as entire file is in one block Higher, as broken pointers can
lose access to data

Low, as the index block can be
duplicated

Best for Large files with sequential access
needs (e.g., video files)

Files of varying sizes in a
fragmented disk space

Files needing random access or large
files with redundancy needs

Thread
Component of process or lightweight process

provide a way to improve application performance through parallelism

Aspect User-Level Threads Kernel-Level Threads

Definition Threads managed at the user level without kernel
intervention

Threads managed directly by the operating system
kernel

Creation &
Management Speed

Faster to create and manage Slower to create and manage

Implementation Implemented by a thread library at the user level Directly supported by the operating system

Operating System
Dependency

Can run on any operating system Specific to the operating system

Support Level Support is provided at the user level, known as
user-level threads

Support is provided by the kernel, known as kernel-
level threads

Multiprocessing
Capability

Limited multiprocessing due to lack of direct kernel
support

Kernel routines can be multithreaded, enabling better
multiprocessing

Aspect Process Thread

Definition Called a "heavyweight process" that operates
independently

Called a "lightweight process" that operates within a
process

Switching
Requirement

Process switching requires interaction with the
operating system

Thread switching doesnʼt need an OS call or kernel
interrupt

Memory &
Resource Allocation

Each process has its own memory and file resources Threads share the same memory and file resources

Blocking Behavior If one process is blocked, no other process can
execute until itʼs unblocked

If one thread is blocked, other threads in the same
process can still execute

Resource Usage Multiple processes use more resources compared to
threads

Multiple threads use fewer resources than processes

Interaction &
Independence

Processes operate independently from each other Threads can access and modify each other's stacks
within the same process

