Digital Signal Processing

Borhan

ASH2101008M November, 2024

Contents

1	What is DSP?		1
2	Signals		
	2.1	Continuous and Discrete Time Signals	1
	2.2	Even and Odd Signal	1
	2.3	Periodic and Non-Periodic	1
	2.4	Causality	1
	2.5	Sided Signals	2
	2.6	Complex Exponential Signal	2
	2.7	Operations on Signals	2
	2.8	Standard Test Signals	3
	2.9	Energy and Power Signal	3
3	Syst	em	3

1 What is DSP?

Digital Signal Processing (DSP) refers to various techniques for improving the accuracy and reliability of digital communication. 1

2 Signals

Signals are detectable physical quantities or variables by which message or information can be transmitted.

Signals are represented mathematically as a function of one or more variable.

$$y = f(t) \tag{1}$$

t = independent variable, y = dependent variable Example : Human voice, Television, Picture etc.

2.1 Continuous and Discrete Time Signals

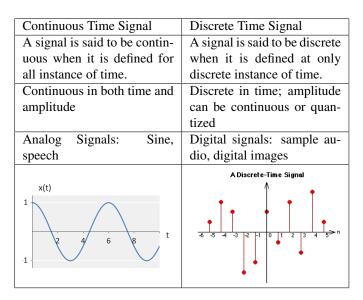


Table 1: Continuous and Discrete Time Signals

¹https://www.techtarget.com/whatis/definition/digital-signal-processing-DSP

2.2 Even and Odd Signal

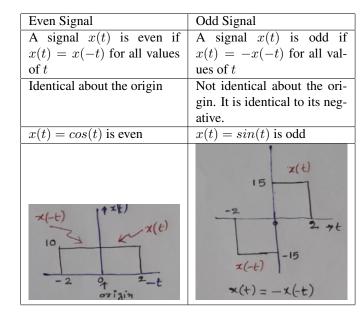
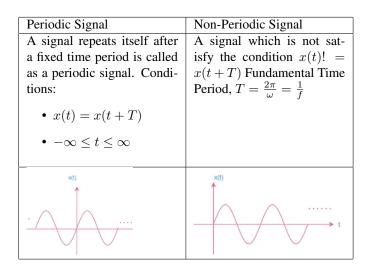
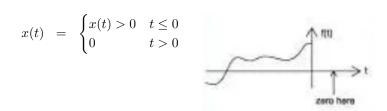


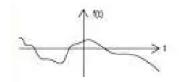
Table 2: Even and Odd Signal

2.3 Periodic and Non-Periodic




Table 3: Properties of Signal

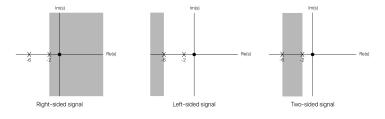
2.4 Causality


Causal Signals: Causal signals are signals that are zero for all negative time.

$$x(t) = \begin{cases} x(t) > 0 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Anti-Causal Singal: A signal which posses zero value for all positive value of time, but has amplitude which is greater than zero for all negative value of time.

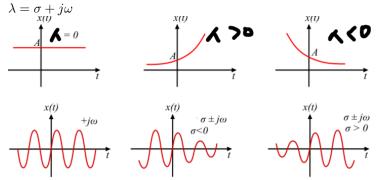
Non-Causal: A signal that has value of amplitude which is greater than zero for both positive and negative instances of time is a non-causal signal.

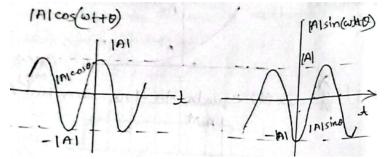


2.5 Sided Signals

Left Sided Signal: A signal is called left-sided if it is non-zero only for $t \leq T$, where T is a finite time.

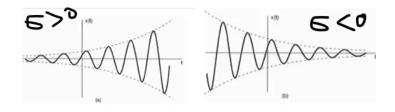
Right Sided Signal: A signal is called right-sided if it is non-zero only for $t \ge T$, where T is a finite time.

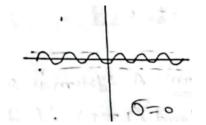

Two Sided Signal: A signal is called two-sided if it is non-zero for both $t \leq T_1$ and $t \geq T_2$, where T_1, T_2 are finite times.


2.6 Complex Exponential Signal

An exponential signal whose samples are complex numbers is known as a complex exponential signal.

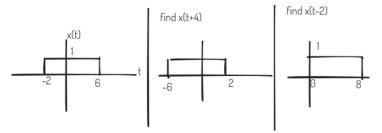
Continuous-Time Complex Exponential Signal : A CT Complex exponential signal is the one that is defined for every instance of time. $x(t) = Ae^{\lambda t}$ Where, A is amplitude and s is a complex variable.



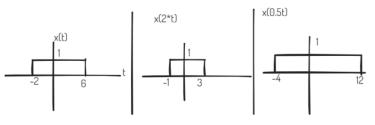

Complex Sinusoid : A complex sinusoid signal is a special case of a complex exponential $x(t) = A^{\lambda t}$, where A is complex and λ is pure imaginary. $x(t) = Ae^{j\omega t}$, where ω is real.

By expressing A in polar form as, $A = |A|e^{j\theta}$, where θ is real and using Euler's relation, $x(t) = |A|\cos(\omega t + \theta) + j|A|\sin(\omega t + \theta)$ Most general case of a complex exponential, A and λ both are complex, letting $A = |A|e^{j\theta}$ and $\lambda = \sigma + j\omega$ and now using Euler's relation,

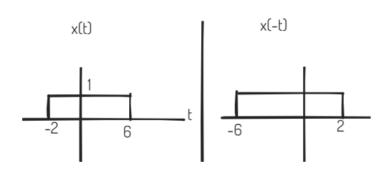
 $x(t) = |A|e^{\sigma t}\cos(\omega t + \theta) + j|A|e^{\sigma t}\sin(\omega t + \theta)$



Exponentially Sinusoid Dumped Signal: A dumped signal is sinusoidal signal which amplitude approaches zero as times increases. $x(t) = Ae^{-\lambda t} \sin(\omega t + \Phi)$

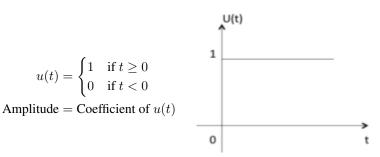


2.7 Operations on Signals


Time Shifting Operation : $x(t \pm t_0)$

Time Scaling Operation $x(\alpha t)$

Time reverse or folding Operation x(-t)



2.8 Standard Test Signals

They are used to check the control systems performance using time response of the output.

Unit Step Signal

The step signal or step function is that type of standard signal which exists only for positive time and it is zero for negative time. If a step signal has unity magnitude, then it is known as unit step signal.

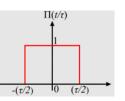
Impulse Signal

An Ideal impulse signal is a signal that is zero everywhere but at the origin (t = 0), it is infinitely high.

$$\delta(t) = \begin{cases} 1 & \text{if } t = 0 \\ 0 & \text{otherwise} \end{cases}$$

 $A \cdot \delta(t), A = A \text{ is the area}$

Ramp Signal


A ramp signal is a type of standard signal which starts at t = 0 and increase linearly with time.

$$r(t) = \begin{cases} t & \text{if } t \le 0 \\ 0 & \text{if } t < 0 \end{cases}$$

Slope = Coefficient of r(t)

Rectangular Single

A signal that produces a rectangular shaped pulse with a width of τ (where $\tau = 1$ for unit rectangular function) centered at t = 0 is known as rectangular signal.

 $rec(t) = \begin{cases} 1 & \text{if } |t| \le \frac{\tau}{2} \\ 0 & \text{otherwise} \end{cases}$ $\tau = 1 \text{ for unit rectangular} \qquad -$

2.9 Energy and Power Signal

Energy Signal: A signal is said to be an energy signal if and only if its total energy *E* is finite, $0 < E < \infty$.

$$E = \lim_{T \to \infty} \int_{-T}^{\frac{T}{2}} |x(t)|^2 dt$$

Power Signal: A signal is said to be a power signal if its average P is finite, $0 < P < \infty$.

 $P = \lim_{T \to \infty} \frac{E}{T} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$ A signal cant be Energy and Power Signals together. If E_x is finite,

A signal cant be Energy and Power Signals together. If E_x is finite, then P_x is zero, vice-versa.

3 System

System is a interconnection of different physical components which is used to convert one form of signal to others.

