
Java Exam Preparation 1

Java Exam Preparation
Last edited time

Created

Tags NSTU OOP Personal Year 2 Term 2

Contributors Borhan

Resources : Slides, ChatGPT, TutorialsPoint

Java

1991, at Sun Microsystems

James Gosling, Patrick Chris, Frank and Mike Sheridan

portable, platform independent language, cross-platform

Java with C and C++

From C → Syntax

From C+ → OOP

Java’s impacts

simplified internet programming

innovated a new type of networked program applet

a special kind of transmitted over the internet and automatically
executed inside a Java-compatible web browser

portability and security

Bytecode

highly optimized set of instructions designed to be executed by what is
called the Java Virtual Machine a part of JRE

it is not executable code, it must be executed by a JBM

JVM was designed as an interpreter for bytecode

HotSpot JVM

@January 16, 2024 11:33 PM

@January 3, 2024 11:25 PM

Java Exam Preparation 2

includes a just-in-time compiler, JIT is a part of the JVM

selected portions of bytecode are compiled into executable code

OOP

three traits : encapsulation, polymorphism and inheritance

Literals

fixed values that are represented in their human readable form

Hexadecimal : 0x, 0X

Octal : 0

Type Conversion

Type Conversion in Assignment

the value of the right side is automatically converted into the type of the
left side

implicit type conversion

not all type conversations are implicitly allowed, ex : boolean and int

automatic type conversion will take place if

compatible

the destination type is larger than the source type

Casting Incompatible types

A cast is an instruction to the compiler to convert one type to another

an explicit type conversion

(target-type) expression

Taking input from keyboard

Java Exam Preparation 3

....

import java.io.*;

throws java.io.IOException{

char ch;

ch = (char) System.in.read();

}

..

Array

// Syntac

type[] array = new type[size];

type array[] = new type[size];

// example

int[] sample = new int[10];

int[] arr = {1,2,3,4,5,6,7,8,9}; // array intializers

//multidimensional array / 2D aray

int [][] table = new int[row][column];

/*

 iruegular array : specify only the memory of first dime

nstion and

second dimension manually

*/

int [][] table = new int[5][];

table[0] = new int[6];

...

sample holds a reference

Assigning array references

int [] arr = new int[10];

int [] arr2 = new int[10];

...

Java Exam Preparation 4

arr = arr2

..

Now, if we changes in arr or arr2, both will be affec

ted.

becasue, by asigning we are simply changing what obj

ect that

 variable refers too. we are not making a copy.

length

array.length => output the size of array

//example

int[][] arr = new int[5][6];

row -> arr.length

col -> arr[0].length

For-each style for loop

sequential fashion, form start to finish

syntax streamlined

it prevents boundary errors

int[] arr = {1,2,3}

for(int x:arr) print x with a space;

ouput : 1 2 3

we can't change the value of arr using "x"

Strings

In java, string are objects

String str = new String("Hello");

String str2 = "Hello";

String str4 = str + str2; // concatenation

// Oparting

str2.charAt(index)

str2.compareTo(str) : 0 = equal, < 0 = less than str,

Java Exam Preparation 5

> 0 = greater than str

str2.indexOf(str) -> first index of str, -1 otherwise

str2.lastIndexOf(str) -> last index of str, -1 othersie

Arrays of string

String[] str = new String[10];

for(int i=0; i<str.length; i++){

str[i] = "hello";

}

str[5] = "hello 5";

for(string s:str) print s;

Strings are immutable

the character sequence that makes up the string cannot be altered

Substring methos

String substr = str.substring(start index, end index);

Inference with Local Variable

it would not be necessary specify an explicit type for an initialized variable
because it could be inferred from the type of its initialized

Conditions

use “var” keyword, reserved keyword, you cant use it as identifier

must be initialized

in array, don’t need to use []

var cant be use with an array initializer

var d = 10.6;

var arr = new int[100];

var str = "Hello";

var newClass = new newClass(10);

Java Exam Preparation 6

//wrong

var b; // not initialized

var b[] == new int a[1000]; // [] brackers used

OOP

new operator

the new operator dynamically allocates memory for an object and returns
a reference to it

impact of reference

Vehicle a = new Vehicle();

Vehicle b = a;

a.value = 100;

print a.value and b.value => 100 100

Constructors

Java automatically provides a default constructor

non-initialized values are zero, null and false

when own constructor is defined, the default constructor is no longer
used

this keyword

When a method is called, “this” is automatically passed an implicit
argument that is a reference to the invoking object

Access modifiers : 3

public

accessed by any other code in program

private

Java Exam Preparation 7

accessed only within the class or other members of its class

cannot be access from outside of the class

protected

 How to achieve call by reference in java?

Ans. To perform call by reference in Java, we can use non-primitive data types
such as object, class, string, array, and interface. With the help of an example,
we have previously shown how we may use these non-primitive data types to
achieve call by reference in Java.

Why is there no call by reference in Java?

Java does not support call by reference because we need to supply the address
and addresses are kept in pointers. Java does not support pointers since they
violate security.

Java is always Pass by value. A few ways to achieve call-by-reference

Making a public member in class

class myClass{

 public int a;

 public void update(myClass ob){

 ob.a = 100;

 }

};

class Main{

 public static void main(String []args){

 myClass ob=new myClass();

 ob.a = 5;

 System.out.println(ob.a);

ob.update(ob);

 System.out.println(ob.a);

 }

}

Return a value from a function and update it

Java Exam Preparation 8

class Main{

public static int update(int x){

 x++;

return x;

}

 public static void main(String []args){

 int i = 5;

System.out.println(i);

i = update(i);

System.out.println(i);

 }

}

Creating array/single element array

class Main{

public static void update(int []x){

 x[0]++;

}

 public static void main(String []args){

 int [] i = {1};

System.out.println(i[0]);

 update(i);

System.out.println(i[0]);

 }

}

Polymorphism

Method overloading

two or more methods within same class can share the same name as
long as their parameter declarations are different

it is not sufficient for two methods to differ only in their return types.

Overloading Constructor

reason : allow one object to initialize another

Java Exam Preparation 9

Static

when a member is declared static it can be accessed before any objects of
its class are created and without reference to any object

both method and variable can be static

no object needs to be created

when an object is declared, no copy of a static variable is made

static method restrictions

directly call only other static methods and variables in their class

do not have this reference

static blocks

executed when the class is first loaded

even before constructor

executed before the class can be used for any other purpose

class my {

my(){

print constructor

}

static{

print static

}

}

var my = new my();

output :

static

constructor

Nested class

class within a class

Java Exam Preparation 10

nested class is a member of enclosing class

a nested class is not known outside of its block

a class can be nested within a method, then it will be unknown outside of the
method

Inheritance

Superclass : a class that is inherited

Subclass: the class that does the inheriting

“extends” keyword

java does not support the inheritance of multiple superclasses into a single
subclass

subclass cant access the only private properties of superlass

accessor method is used to share private properties

class {

private int b=5;

int accessor() return b;

}

constructor

if superclass and subclass both have constructors

super is used

super(parameter-list), must be the first statement inside a subclass
constructor

super.variable to access superclass variable or methods

class A{

int i;

}

class B extends A{

B(int a, int b){

Java Exam Preparation 11

super.i = a; // access the i of A

i = b; // access the i of B

}

}

Multilevel hierarchy

Superclass → Subclass → Subclass ….

Dynamic Method Dispatch

runtime polymorphism

 an overridden method is resolved at run time rather than compile time.

Package

package are groups of related classes

the Java compiler automatically imports two entire packages for each source file:
(1) the java.lang package and (2) the current package (the package for the
current file).

Interface

An interface is syntactically similar to an abstract class, in that you can
specify one or more methods that have no body.

specifies what must be done, but not how to do it

one class can implement any number of interfaces

access interface intface{

....

};

class myClass implements intface{

Java Exam Preparation 12

....

}

when no access modifier is included then default access result

in interface, methods are implicitly public

variables area public, final and static

methods that implement an interface must be public

a class doesn’t implement all methods of the interface → must be declared
as abstract, so no objects cant be created of that class and it will work like a
abstract superclass

interface reference can be created → similar to a superclass reference to
access a subclass object

interface can be extended by using “extends”

interface default method

we can give default function definition if the method is not implemented
by the class

static interface method

private interface method

Code re-usability

encapsulation

Exception handling

an exception is an error occurs at run time

exception handling streamlines error handling by allowing your program to
define a block of code called an exception handler, that is executed
automatically when an error occurs.

In java all exceptions are represented by classes : Throwable

it has two subclass

Exception : errors from program activity

Java Exam Preparation 13

Error : occur in JVM, not in own’s code

exception handling managed via five keywords

try

problem statement that needs to be monitored

if exception occurs, it is thrown

catch

catch this exception

throw

to manually throw an exception

throws

an exception that is thrown out of a method must be specified as
such by a throws clause

finally

code must be executed upon exiting from a try block

uncaught exception

if program does not catch an exception, then it will be caught by the
JVM, it will display error message and terminate execution

some exceptions

ArithmeticException exc → divided by 0

ArrayIndexOutOfBoundsException exc

Throwable exc → some exception occurred (superclass of all
exceptions)

catching subclass exception

a catch clause for a superclass will also match of its subclasses

the superclass of all exception is “Throwable”

to catch both subclass and superclass type, first catch should be
subclasses and then superclass

Rethrow

Java Exam Preparation 14

an exception caught by one catch statement can be rethrown so that it
can be caught by an outer catch

allow multiple handlers access

Throws

if a method generates an exception that it does not handle, it must
declare that exception in a throws clause

throws keyword is used to declare an exception as well as pass the
caller

Problem

What is bytecode ? Explain Boolean data type with example?

A:

highly optimized set of instructions designed to be executed by what is called the
Java Virtual Machine a part of JRE.

It is an intermediate code between source code and machine code. Enables
portability and platform independence for interpreted languages.

Bytecode is an intermediate representation of a program that is generated by the
Java compiler. Instead of generating machine-specific code, Java compilers
translate Java source code into bytecode

Boolean Data Type: Represents a binary value, typically denoted as true or false. 1
byte.

public class BooleanExample {

 public static void main(String[] args) {

 boolean isJavaFun = true;

 System.out.println("Is Java fun? " + isJavaFun);

 if (isJavaFun) {

 System.out.println("Yes, Java is fun!");

 } else {

 System.out.println("No, Java is not fun.");

 }

Java Exam Preparation 15

 }

}

Explain the For-Each version of the for loop with example.

A: A concise way to iterate over all elements in an array or a collection. It simplifies
the syntax and make it easier to traverse because it doesn’t requires indexing.
Syntax:

for (element_type element : array_or_collection) {

 // Code to be executed for each element

}

/*Here, element_type is the data type of the elements in th

e array or

collection, and array_or_collection is the array or collec

tion you

want to iterate over.*/

public class ForEachExample {

 public static void main(String[] args) {

 // Declare an array of integers

 int[] numbers = {1, 2, 3, 4, 5};

 for (int number : numbers) {

 System.out.println(number);

 }

 }

}

Is Java pure object oriented ? Java is platform independent but JVM is not, why
?

A: Java is not considered a pure object-oriented programming language.

The main reason is it supports primitive type values. For an object-oriented
programming language, data should be represented in the form of objects. As

Java Exam Preparation 16

Java uses primitive data types, it is not considered a pure object-oriented
programming language.

 It supports the use of the static keyword.

While Java itself is platform-independent, the JVM is platform-dependent. This is
because the JVM is specific to each operating system and hardware architecture.
When you write Java code, you compile it into bytecode, and this bytecode can be
run on any system with the appropriate JVM for that system.

The reason JVM is not platform-independent is that it needs to be implemented
differently for each operating system and hardware combination to interact with the
underlying system resources.

How to create a two dimensional array in which the sizes of the second
dimension are unequal? Explain with a programming example.

public class UnequalSize2DArrayExample {

 public static void main(String[] args) {

 int[][] unevenArray = new int[3][]; // Array with 3

"rows"

 unevenArray[0] = new int[3]; // First row with 3 e

lements

 unevenArray[1] = new int[4]; // Second row with 4

elements

 unevenArray[2] = new int[2]; // Third row with 2

elements

 }

}

In this example, unevenArray is a two-dimensional array where each "row" is an array
with a different size. The first row has 3 elements, the second row has 4 elements,
and the third row has 2 elements. The program then prints the elements of the two-
dimensional array using nested loops.

This flexibility allows you to create a jagged array, which is a two-dimensional array
with varying row sizes. It's worth noting that each "row" is a separate array object,

Java Exam Preparation 17

and they can have different lengths.

What is the purpose of keyword new? Explain what happens when this keyword
is used in a program.

A: In Java, the new keyword is used to dynamically allocate memory for an object at
runtime. It is an essential part of the process of object creation.

Memory Allocation: allocates memory spaces on the heap

Object initialization: called the constructor

Return reference: returns a reference to the newly created object

Find error in the following fragment of a program.

final class A{

// ...

}

class B extends A{

// ...

}

In Java, when a class is declared with the final keyword, it means that the class
cannot be subclassed or extended by other classes. The final keyword, when
applied to a class, indicates that the class is complete and cannot be further modified
in terms of inheritance.

Why trim() method is used? Illustrate with a programming example.

A: The trim() method in Java is used to remove leading and trailing whitespace
from a string. Whitespace includes spaces, tabs, and line breaks.

public class TrimExample {

 public static void main(String[] args) {

 String originalString = " Hello, Trim! ";

 String trimmedString = originalString.trim();

 // Displaying the results

Java Exam Preparation 18

 System.out.println("Original String: \"" + original

String + "\"");

 System.out.println("Trimmed String: \"" + trimmedSt

ring + "\"");

 }

}

/*Output

Original String: " Hello, Trim! "

Trimmed String: "Hello, Trim!"

*/

Define bytecode. Why does Java use Unicode?

A: Bytecode

highly optimized set of instructions designed to be executed by what is called the
Java Virtual Machine a part of JRE.

It is an intermediate code between source code and machine code. Enables
portability and platform independence for interpreted languages.

Bytecode is an intermediate representation of a program that is generated by the
Java compiler. Instead of generating machine-specific code, Java compilers
translate Java source code into bytecode

Java uses Unicode for character representation to ensure consistent handling of
characters across different platforms and languages. Unicode is a standardized
character encoding that assigns a unique numeric value to each character,
regardless of the platform, program, or language.

What are the three main principles of object-oriented programming?
Explain.

Encapsulations: Encapsulation is the bundling of data (attributes) and the
methods (functions) that operate on the data into a single unit known as a
class. Encapsulation helps in organizing code, hiding implementation details,
and promoting modularity.

Java Exam Preparation 19

Inheritance: Inheritance is a mechanism that allows a new class (subclass
or derived class) to inherit properties and behaviors from an existing class
(base class or superclass).

Polymorphism: Polymorphism allows objects of different classes to be
treated as objects of a common base class. It enables a single interface to
represent different types or forms. There are two types of polymorphism:
compile-time (method overloading) and runtime (method overriding).

You know there are four integer types: int, short, long, and byte. However,
char can also be categorized as an integer type in Java. Why?

In Java, the char type is often categorized as an integer type because it represents
16-bit Unicode characters. While int , short , long , and byte are integral data
types used to store integer values, char is specifically designed to store Unicode
characters, which are essentially numeric representations of characters from various
writing systems.

"Java allows variables to be initialized dynamically"-do you agree with the
statement? Justify your answer with an example.

Yes.

Initialization is the process of providing value to a variable at declaration time.
Dynamic initialization of object refers to initializing the objects at run time i.e. the
initial value of an object is to be provided during run time. Dynamic initialization
can be achieved using constructors and passing parameters values to the
constructors.

public class Car {

 String make;

 String model;

 int year;

 public Car(String make, String model, int year) {

 this.make = make;

 this.model = model;

 this.year = year;

 }

 public static void main(String[] args) {

Java Exam Preparation 20

 Car myCar = new Car("Toyota", "Camry", 2022);

 myCar.displayInfo();

 }

}

What is type conversion and casting? Explain with proper examples.

Type Conversion/Implicit Type Conversion: Occurs automatically when a
value of one data type is assigned to a variable of another compatible data
type. Java performs implicit type conversion when the conversion does not
result in a loss of precision or information.

int intValue = 42;

long longValue = intValue; // Implicit conversion from i

nt to long

Explicit Type Conversion (Casting): Requires manual intervention and is
done using casting operators. Explicit casting is needed when converting
from a larger data type to a smaller one, or when precision loss is
possible.

double doubleValue = 3.14;

int intValue = (int) doubleValue; // Explicit casting fr

om double to int

Differentiate between a class and an object. What do you mean by this
keyword? Explain with an example.

Feature Class Object

Definition
A blueprint or template for
creating objects.

An instance of a class; a concrete
realization based on the class
blueprint.

Nature Abstract, representing a type. Concrete, representing an instance.

Properties
Defines attributes and behaviors
but does not have specific values
for them.

Has specific values for attributes and
can perform actions defined by
behaviors.

Java Exam Preparation 21

Feature Class Object

Creation Used to create objects. Created based on a class.

Instantiation
A class itself cannot be
instantiated; it needs to be
instantiated to create objects.

Represents a specific instance created
from a class.

Usage
Used to structure and organize
code.

Used to model and represent real-
world entities.

Example

If Car is a class, it might define
attributes like make , model ,

and year , and behaviors like

startEngine .

If myCar is an object of the Car

class, it has specific values for make ,

model , and year and can perform

actions like starting the engine.

Memory
Class definition does not occupy
memory at runtime.

Each object created from a class
consumes memory space to store its
state.

Keyword
No keyword associated directly;
the class keyword is used in the
class definition.

No specific keyword; the instance is
created using the new keyword

followed by the class constructor.

this keyword

• The this keyword in Java is a reference variable that refers to the current
object.

• It is used to differentiate between instance variables and parameters with the
same name within a method or constructor.

• this is often used to access instance variables or invoke methods of the
current object.

public class Car {

 String make;

 String model;

 int year;

 public Car(String make, String model, int year) {

 this.make = make;

 this.model = model;

 this.year = year;

 }

Java Exam Preparation 22

 public void displayInfo() {

 // Use of 'this' to access instance variables

 System.out.println("Car Make: " + this.make);

 System.out.println("Car Model: " + this.model);

 System.out.println("Manufacturing Year: " + this.ye

ar);

 }

 public static void main(String[] args) {

 Car myCar = new Car("Toyota", "Camry", 2022);

 myCar.displayInfo();

 }

}

In this example:

The Car class is defined with instance variables (make , model , year), a
parameterized constructor, and a method (displayInfo).

Inside the constructor and the displayInfo method, the this keyword is used to
reference the current object's instance variables.

In the main method, an object of the Car class (myCar) is created, and its
information is displayed using the displayInfo method.

What is method overloading? Explain with an example program.

Method overloading is a feature in Java that allows a class to have multiple
methods with the same name but different parameters. The parameters can
differ in terms of the number, type, or order. Overloaded methods provide flexibility
and improve code readability.

public class MathOperations {

 public int add(int a, int b) {

 return a + b;

 }

 public int add(int a, int b, int c) {

Java Exam Preparation 23

 return a + b + c;

 }

 public double add(double a, double b) {

 return a + b;

 }

 public static void main(String[] args) {

 MathOperations mathOps = new MathOperations();

 int result1 = mathOps.add(5, 10);

 int result2 = mathOps.add(3, 7, 12);

 double result3 = mathOps.add(2.5, 3.5);

 System.out.println("Result 1: " + result1);

 System.out.println("Result 2: " + result2);

 System.out.println("Result 3: " + result3);

 }

}

Discuss about the method overloading and constructor overloading with
an example.

Constructor overloading is a concept similar to method overloading, but it involves
having multiple constructors in a class with different parameter lists.

public class OverloadingExample {

 // Constructor Overloading

 public OverloadingExample() {

 System.out.println("Default Constructor");

 }

 public OverloadingExample(int value) {

 System.out.println("Parameterized Constructor with

one int parameter: " + value);

 }

Java Exam Preparation 24

 public OverloadingExample(double value1, double value2)

{

 System.out.println("Parameterized Constructor with

two double parameters: " + value1 + ", " + value2);

 }

 // Method Overloading

 public int add(int a, int b) {

 return a + b;

 }

 public double add(double a, double b) {

 return a + b;

 }

 public String add(String str1, String str2) {

 return str1 + str2;

 }

 public static void main(String[] args) {

 // Constructor Overloading

 OverloadingExample defaultConstructor = new Overloa

dingExample();

 OverloadingExample intConstructor = new Overloading

Example(42);

 OverloadingExample doubleConstructor = new Overload

ingExample(3.14, 2.7);

 System.out.println("-------------------------");

 // Method Overloading

 OverloadingExample example = new OverloadingExample

();

 int sumInt = example.add(5, 10);

 double sumDouble = example.add(3.5, 2.5);

 String concatenatedString = example.add("Hello, ",

"World!");

Java Exam Preparation 25

 // Displaying results

 System.out.println("Sum (int): " + sumInt);

 System.out.println("Sum (double): " + sumDouble);

 System.out.println("Concatenated String: " + concat

enatedString);

 }

}

Write a java program to implement visibility controls such as public,
private, protected access modes. Assume suitable data, if any.

class VisibilityExample {

 public String publicMessage = "This is a public messag

e.";

 private String privateMessage = "This is a private mess

age.";

 protected String protectedMessage = "This is a protecte

d message.";

 String defaultMessage = "This is a default message.";

 public void displayPublicMessage() {

 System.out.println("Public Message: " + publicMessa

ge);

 }

 private void displayPrivateMessage() {

 System.out.println("Private Message: " + privateMes

sage);

 }

 protected void displayProtectedMessage() {

 System.out.println("Protected Message: " + protecte

dMessage);

 }

 void displayDefaultMessage() {

Java Exam Preparation 26

 System.out.println("Default Message: " + defaultMes

sage);

 }

}

class Subclass extends VisibilityExample {

 void displayProtectedFromSubclass() {

 System.out.println("Protected Message from Subclas

s: " + protectedMessage);

 }

 void displayProtectedMethodFromSubclass() {

 displayProtectedMessage();

 }

}

public class VisibilityControlsExample {

 public static void main(String[] args) {

 VisibilityExample example = new VisibilityExample

();

 System.out.println("Public Message: " + example.pub

licMessage);

 example.displayPublicMessage();

 System.out.println("-------------------------");

 Subclass subclass = new Subclass();

 subclass.displayProtectedFromSubclass();

 subclass.displayProtectedMethodFromSubclass();

 System.out.println("-------------------------");

 // Uncommenting the lines below will result in comp

ilation errors

 // because private and default members are not acce

ssible from outside the class and package.

Java Exam Preparation 27

 // System.out.println("Private Message: " + exampl

e.privateMessage);

 // example.displayPrivateMessage();

 // System.out.println("Default Message: " + exampl

e.defaultMessage);

 // example.displayDefaultMessage();

 }

}

What is an abstract class? "A class that contains at least one abstract
method must, itself, be declared abstract"- Is it true or False? Answer
accordingly.

An abstract class in Java is a class that cannot be instantiated on its own and may
contain both abstract methods (methods without a body) and concrete
methods. • To declare an abstract class, the abstract keyword is used.

True. If a class contains at least one abstract method, it must be declared as abstract
itself.

abstract class Shape {

 // Abstract method (no body)

 public abstract double calculateArea();

 // Concrete method with implementation

 public void display() {

 System.out.println("This is a shape.");

 }

}

"A superclass reference can refer to a subclass object."- Explain why this
is important as it relates to method overriding.

This is important, because it’s a way of achieving runtime polymorphism or dynamic
method dispatch.

Java Exam Preparation 28

When a method is called on an object through a reference variable, the actual
method that gets executed is determined at runtime based on the type of the object,
not the type of the reference variable. It enables the execution of the overridden
method in the subclass, even if the reference variable is of the superclass type.

class Animal {

 void makeSound() {

 System.out.println("Some generic sound");

 }

}

class Dog extends Animal {

 void makeSound() {

 System.out.println("Bark! Bark!");

 }

}

public class PolymorphismExample {

 public static void main(String[] args) {

 Animal myDog = new Dog();

 myDog.makeSound();

 }

}

What is inheritance? Explain the benefits of inheritance with an example

Inheritance is a mechanism that allows a new class (subclass or derived class) to
inherit properties and behaviors from an existing class (base class or superclass).

Benefits:

Code Reusability

Extensibility

Polymorphism

Structural Hierarchy

// Base class (Superclass)

class Vehicle {

Java Exam Preparation 29

 String brand;

 int year;

 // Constructor

 public Vehicle(String brand, int year) {

 this.brand = brand;

 this.year = year;

 }

 // Method

 void start() {

 System.out.println("The vehicle is starting.");

 }

}

// Subclass 1

class Car extends Vehicle {

 int numberOfDoors;

 // Constructor

 public Car(String brand, int year, int numberOfDoors) {

 super(brand, year); // Call to superclass construct

or

 this.numberOfDoors = numberOfDoors;

 }

 // Method overriding

 void start() {

 System.out.println("The car engine is starting.");

 }

 void drive() {

 System.out.println("The car is in motion.");

 }

}

// Subclass 2

Java Exam Preparation 30

class Motorcycle extends Vehicle {

 boolean hasSideCar;

 // Constructor

 public Motorcycle(String brand, int year, boolean hasSi

deCar) {

 super(brand, year); // Call to superclass construct

or

 this.hasSideCar = hasSideCar;

 }

 // Method overriding

 void start() {

 System.out.println("The motorcycle engine is starti

ng.");

 }

 void ride() {

 System.out.println("The motorcycle is in motion.");

 }

}

public class InheritanceExample {

 public static void main(String[] args) {

 // Creating instances of subclasses

 Car myCar = new Car("Toyota", 2022, 4);

 Motorcycle myMotorcycle = new Motorcycle("Harley-Da

vidson", 2021, false);

 // Accessing inherited members

 System.out.println("Car Brand: " + myCar.brand);

 System.out.println("Motorcycle Year: " + myMotorcyc

le.year);

 // Calling overridden methods

 myCar.start(); // Calls overridden method

in Car class

Java Exam Preparation 31

 myMotorcycle.start(); // Calls overridden method

in Motorcycle class

 // Calling subclass-specific methods

 myCar.drive();

 myMotorcycle.ride();

 }

}

Explain the usage of abstract classes and methods? With an example
program

Abstract classes and methods in Java are used to define a common structure for a
group of related classes. Abstract classes cannot be instantiated on their own; they
are meant to be extended by subclasses. Abstract methods declared in an abstract
class are meant to be implemented by the concrete (non-abstract) subclasses.
Abstract classes provide a way to achieve abstraction and define a blueprint for
classes that share common characteristics.

abstract class Shape {

 abstract double calculateArea();

 void display() {

 System.out.println("This is a shape.");

 }

}

class Circle extends Shape {

 private double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 double calculateArea() {

Java Exam Preparation 32

 return Math.PI * radius * radius;

 }

}

class Rectangle extends Shape {

 private double length;

 private double width;

 public Rectangle(double length, double width) {

 this.length = length;

 this.width = width;

 }

 double calculateArea() {

 return length * width;

 }

}

public class AbstractClassExample {

 public static void main(String[] args) {

 Circle myCircle = new Circle(5.0);

 Rectangle myRectangle = new Rectangle(4.0, 6.0);

 myCircle.display();

 System.out.println("Area of Circle: " + myCircle.ca

lculateArea());

 System.out.println("-------------------------");

 myRectangle.display();

 System.out.println("Area of Rectangle: " + myRectan

gle.calculateArea());

 }

}

Write a java program to implement multilevel inheritance with 4 levels of
hierarchy.

Java Exam Preparation 33

class A {

 void displayA() {

 System.out.println("Class A");

 }

}

class B extends A {

 void displayB() {

 System.out.println("Class B");

 }

}

class C extends B {

 void displayC() {

 System.out.println("Class C");

 }

}

class D extends C {

 void displayD() {

 System.out.println("Class D");

 }

}

public class MultilevelInheritanceExample {

 public static void main(String[] args) {

 D objD = new D();

 // Accessing methods from different levels of hiera

rchy

 objD.displayA(); // From class A

 objD.displayB(); // From class B

 objD.displayC(); // From class C

 objD.displayD(); // From class D

 }

}

Java Exam Preparation 34

What is garbage collection in Java? Explain finalize method in Java.

Garbage collection is a process in Java that automatically reclaims memory
occupied by objects that are no longer in use or reachable by the program. Java
employs an automatic garbage collector to manage memory and deallocate objects
that are no longer referenced. This helps in avoiding memory leaks and makes
memory management more convenient for developers.

The finalize() method is a method defined in the Object class in Java, which is the
base class for all other classes. It is invoked by the garbage collector before an
object is garbage collected, providing an opportunity to perform cleanup operations.

The primary purpose of the finalize() method is to perform any necessary
cleanup before an object is destroyed.

It is recommended to use try-finally or try-catch-resources constructs for
resource cleanup.

import java.lang.*;

 class prep {

 protected void finalize() throws Throwable

 {

 try {

 System.out.println("inside prep finalize()");

 }

 catch (Throwable e) {

 throw e;

 }

 finally {

 System.out.println("Calling finalize method"

 + " of the Object class");

 // Calling finalize() of Object class

 super.finalize();

Java Exam Preparation 35

 }

 }

 // Driver code

 public static void main(String[] args) throws Throwable

 {

 // Creating demo's object

 prep d = new prep();

 // Calling finalize of demo

 d.finalize();

 }

}

Compare and Contrast differences between interfaces vs abstract classes.

Feature Interfaces Abstract Classes

Inheritance
Supports multiple inheritance. A
class can implement multiple
interfaces.

Supports single inheritance. A
class can extend only one
abstract class.

Constructor Cannot have constructors.
Can have constructors, and they
are used during object creation.

Fields Can have only static and final fields.
Can have instance variables,
static variables, and final
variables.

Access
Modifiers

All methods are implicitly public and
abstract. Fields are implicitly public,
static, and final.

Can have different access
modifiers for methods and fields.

Method Type
Methods are implicitly abstract and
public. Can also have default and
static methods starting from Java 8.

Methods can be abstract or
concrete. They may have any
access modifier (public, private,
protected).

State
Cannot contain state (fields) before
Java 8 (Java 8 onwards, static and
final fields are allowed).

Can contain state (fields).

Java Exam Preparation 36

Feature Interfaces Abstract Classes

Constructor
Invocation

No constructor chaining because
there are no constructors in
interfaces.

Supports constructor chaining
through the constructor of the
superclass.

Instance
Creation

Cannot be instantiated.
Cannot be instantiated; used as a
blueprint for subclasses.

Use Cases
Used to achieve multiple inheritance
and to define contracts for classes.

Used when a common base
implementation is needed and to
provide a partial or complete
implementation.

Dependency

Promotes a loosely coupled design
as a class can implement multiple
interfaces without worrying about the
implementation details.

Tighter coupling, as a class can
extend only one abstract class
and is bound to its
implementation.

Versioning
Easier to add new methods without
affecting existing classes that
implement the interface.

May lead to issues with existing
subclasses if new methods are
added, especially in backward
compatibility scenarios.

Abstract
Methods

All methods are implicitly abstract.
May have abstract and concrete
methods.

Default Methods
Introduced in Java 8. Allows adding
new methods to interfaces without
breaking existing implementations.

Not applicable; abstract classes
do not have default methods.

What is an exception? Explain how an exception can be handled in Java?
And also list the benefits of Exception Handling.

An exception in Java is an event that disrupts the normal flow of the program's
instructions during execution. It is typically caused by errors or unexpected
conditions that occur at runtime. Exceptions can be of different types, such as
runtime exceptions, checked exceptions, and errors.

try {

 // Code that may cause an exception

} catch (ExceptionType1 e1) {

 // Handle ExceptionType1

} catch (ExceptionType2 e2) {

 // Handle ExceptionType2

Java Exam Preparation 37

} finally {

 // Code that will be executed regardless of whether an exc

}

The try block contains the code that may throw an exception.

The catch blocks handle specific types of exceptions that may occur in the try
block.

The finally block contains code that will be executed regardless of whether an
exception occurred or not. It is optional.

Benefits:

Error Localization : Exception handling helps in localizing and handling errors
where they occur.

Program Robustness: enhances program robustness by preventing abnormal
program termination

Separation of Concerns: promotes separation of concerns by allowing the code
that may cause exceptions

Graceful degradation : enables graceful degradation by providing a mechanism
to respond to unexpected situations

Distinguish between exception and error.

Feature Exception Error

Type
Checked or Unchecked
Exception

Unchecked Exception (Runtime Exception)

Cause
Caused by external factors or
user code

Generally caused by external factors
beyond the control of the application or
indicate serious issues in the JVM or
the system

Handling
Intended to be caught and
handled by the program

Typically not caught or handled by the
program; often indicates irrecoverable
situations

Examples
IOException ,

SQLException ,
NullPointerException

OutOfMemoryError ,

StackOverflowError ,
NoClassDefFoundError

Java Exam Preparation 38

Define an exception called "NotEqualException" that is thrown when a float
value is not equal to 3.14. Write a java program that uses the above user
defined exception.

// User-defined exception class

class NotEqualException extends Exception {

 public NotEqualException(String message) {

 super(message);

 }

}

// Main program

public class CustomExceptionExample {

 public static void main(String[] args) {

 try {

 float floatValue = 3.0f; // Change this value t

o see the exception

 // Check if the float value is equal to 3.14

 if (floatValue != 3.14f) {

 throw new NotEqualException("Float value is

not equal to 3.14");

 } else {

 System.out.println("Float value is equal to

3.14");

 }

 } catch (NotEqualException e) {

 // Handle the custom exception

 System.err.println("Caught NotEqualException: " + e.get

Message());

 }

 }

}

Java is guaranteed to be "Write Once, Run Anywhere." Explain.

Java Exam Preparation 39

"Write Once, Run Anywhere" (WORA) is a key principle of Java that highlights its
platform independence. This principle is achieved through the use of the Java Virtual
Machine (JVM) and bytecode.

 Java source code is compiled into an intermediate form called bytecode. This
bytecode is not specific to any particular hardware or operating system. The
compiled bytecode is executed by the Java Virtual Machine (JVM). The JVM is a
software-based machine that interprets and executes Java bytecode.

Briefly explain the use of try, catch, throw, throws and finally with an
example.

1. try block:

The try block contains the code that might throw an exception.

2. catch block:

The catch block follows the try block and handles the exception if it occurs.
Multiple catch blocks can be used to handle different types of exceptions.

3. throw statement:

The throw statement is used to explicitly throw an exception. It is typically
used within the try block.

4. throws clause:

The throws clause is used in a method signature to declare the exceptions
that the method might throw. It informs the caller about the potential
exceptions.

5. finally block:

The finally block contains code that will be executed whether an exception
occurs or not. It is optional but commonly used for cleanup operations.

.

try {

 // Code that may cause an exception

} catch (ExceptionType1 e1) {

 // Handle ExceptionType1

} catch (ExceptionType2 e2) {

 // Handle ExceptionType2

Java Exam Preparation 40

} finally {

 // Code that will be executed regardless of whether

an exception occurred or not

}

throw vs throws

Feature throw throws

Purpose
Used to explicitly throw an
exception in code.

Used in method signatures to
declare exceptions that the
method might throw.

Usage
Used inside the try block to

throw an exception.

Used in method declarations
followed by the exception types
separated by commas.

Example
throw new

IOException("Invalid

input");

void exampleMethod() throws

IOException { ... }

Applicability
Used for throwing exceptions
programmatically.

Used for declaring exceptions that
a method may throw, allowing the
caller to handle them or propagate
them further.

Location
Inside a method or a block of
code.

In the method signature before the
method body.

Exception Type
Can throw any subclass of
Throwable .

Specifies the specific exceptions
that a method might throw.

Number of
Types

Can throw one exception at a
time.

Can declare multiple exceptions
using a comma-separated list.

Handling

Requires a corresponding
catch block or the method

must declare the exception
using throws .

Alerts the calling code about
potential exceptions and allows it
to handle them.

What is portability? How does Java solve portability problem?

Portability refers to the ability of software to run on different platforms or systems
without modification. In the context of programming languages and applications,

Java Exam Preparation 41

a portable program can be written once and then executed on various platforms
with minimal or no modifications.

How Java Solves the Portability Problem:

1. Bytecode:

Java source code is compiled into an intermediate form called bytecode.
Bytecode is not platform-specific and can be executed on any device
or system that has a Java Virtual Machine (JVM) implemented for that
platform.

2. Java Virtual Machine (JVM):

The JVM is a software-based machine that interprets and executes
Java bytecode. Each platform or operating system has its own JVM
implementation, making it responsible for handling platform-specific
details.

Write the names of bitwise operators?

The bitwise operators in Java are:

1. AND (&):

2. OR (|):

3. XOR (^):

4. NOT (~):

5. Left Shift (<<):

6. Right Shift (>>):

7. Unsigned Right Shift (>>>):

Why static members are declared in a class? What are the restrictions
when methods are declared as static?

why:

Memory efficiency : Static members are allocated memory only once,
regardless of the number of instances created.

Global Access

Java Exam Preparation 42

static method restrictions

directly call only other static methods and variables in their class

do not have this reference

Cannot Use super in a Static Context:

Why super keyword is used? Explain with a programming example.

The super keyword in Java is used to refer to the immediate parent class's members
(variables or methods, constructors). It is often used to differentiate between a
subclass's members and those of its superclass with the same name.

class Animal {

 void makeSound() {

 System.out.println("Some generic sound");

 }

}

class Dog extends Animal {

 void makeSound() {

 // Calling the superclass's makeSound using super

 super.makeSound();

 // Adding subclass-specific behavior

 System.out.println("Woof! Woof!");

 }

}

public class SuperKeywordExample {

 public static void main(String[] args) {

 Dog myDog = new Dog();

 myDog.makeSound();

 }

}

In this example:

The Animal class has a makeSound method.

Java Exam Preparation 43

The Dog class extends Animal and overrides the makeSound method.

Inside Dog 's makeSound method, super.makeSound() is used to explicitly call the
makeSound method of the superclass (Animal), followed by additional behavior
specific to the Dog class.

What is the difference between method overriding and overloading?
Explain.

Feature Method Overriding Method Overloading

Definition
Occurs when a subclass provides a specific
implementation for a method that is already
defined in its superclass.

Involves having multiple
methods in the same class
with the same name but
different parameter lists
(number, type, or order).

Signature

The overridden method in the subclass must
have the same method signature (name,
return type, and parameters) as the one in
the superclass.

The overloaded methods
must have different
parameter lists. The return
type or access modifiers
may remain the same or
differ.

Inheritance
Related to inheritance and occurs in a
superclass-subclass relationship.

Not dependent on
inheritance; can occur
within the same class or
between a superclass and
its subclass.

Occurrence
Happens when a subclass wants to provide
a specialized implementation for a method
defined in its superclass.

Involves having multiple
methods in the same class
with the same name but
different parameter lists.

Polymorphism

Contributes to runtime polymorphism. The
version of the method in the subclass
replaces the one in the superclass during
runtime.

Does not involve
polymorphism. The
appropriate method to be
executed is determined at
compile-time based on the
method signature.

Example

java class Animal { void makeSound() {

System.out.println("Some generic

sound"); } } class Dog extends Animal {

void makeSound() {

System.out.println("Woof! Woof!"); } }

java class Calculator {

int add(int a, int b) {

return a + b; } double

add(double a, double b)

{ return a + b; } }

Java Exam Preparation 44

What is dynamic method dispatch? Explain dynamic method dispatch with
a programming example.

Dynamic Method Dispatch is a mechanism in object-oriented programming
languages, including Java, where the method that gets executed is determined at
runtime based on the actual type of the object. It enables polymorphism and
allows a superclass reference variable to refer to a subclass object and invoke
overridden methods.

class Animal {

 void makeSound() {

 System.out.println("Some generic sound");

 }

}

class Dog extends Animal {

 void makeSound() {

 System.out.println("Woof! Woof!");

 }

}

class Cat extends Animal {

 void makeSound() {

 System.out.println("Meow!");

 }

}

public class DynamicMethodDispatchExample {

 public static void main(String[] args) {

 Animal myAnimal;

 myAnimal = new Dog(); // Dog object assigned to Ani

mal reference

 myAnimal.makeSound(); // Dynamic method dispatch, c

alls Dog's makeSound

 myAnimal = new Cat(); // Cat object assigned to Ani

mal reference

Java Exam Preparation 45

 myAnimal.makeSound(); // Dynamic method dispatch, c

alls Cat's makeSound

 }

}

In this example:

We have a superclass Animal with a method makeSound .

There are two subclasses, Dog and Cat , both of which override the makeSound
method.

In the main method, we create an Animal reference variable (myAnimal) and
assign it successively to objects of type Dog and Cat .

The makeSound method is called on the myAnimal reference. At runtime, the JVM
determines the actual type of the object that myAnimal is referring to and calls the
overridden method in that specific subclass (Dog or Cat).

Given the following hierarchy:

class Alpha {...

class Beta extends Alpha {....

Class Gamma extends Beta {....

In what order do the constructors for these classes complete their execution
when a Gamma object is instantiated?

[Keynote: Superclass → subclass of this superclass- > subclass of the …..]

1. Topmost Superclass (Alpha):

The constructor of the topmost superclass (Alpha) is executed first.

2. Immediate Superclass (Beta):

The constructor of the immediate superclass (Beta) is executed next.

3. Derived Class (Gamma):

Finally, the constructor of the derived class (Gamma) is executed.

Therefore, when a Gamma object is instantiated, the order of constructor execution is
as follows:

Java Exam Preparation 46

Output:
Alpha’s Constructor
Beta’s Constructor

Gamma’s constructor

Find error in the following fragment of a program. What type of error will occur?

class A{

public static void main(String args[]){

int x=99;

{ int x=9;}.

}

}

A variable in a method can be defined only for once. While the “x” is declared twice.
So, it will generate an error.

Attempting to declare the variable x again within the inner block will result in a
compilation error.

int a=32; a=a>>2; After applying this, What will be the value of a?

[Right shift : x >> y ⇒ dividing x by 2^y

Left shift : x << y ⇒ multiplying x by 2^y]

Find out the error of the following code. Explain, why?

 class A{

final void xy() { System.out.println("xy"); }

}

class B extends A{

void xy() { System.out.println("xy"); } }

 =22
32 8

Java Exam Preparation 47

In Java, when a method in a superclass is declared as final , it means that the
method cannot be overridden by any subclass. However, in the code, it is
attempting to override the final method xy in the subclass B . This is not
allowed, and it will result in a compilation error.

Explain the two ways that the members of a package can be used by other
packages

Importing Individual Members Explicitly

In this approach, specific members (classes, interfaces, or other items) of a
package are imported explicitly into the code of another package using the
import statement. This allows developers to selectively import only the
components they need, avoiding naming conflicts.

package com.example.packageB;

import com.example.packageA.MyClassA;

public class MyClassB {

 public static void main(String[] args) {

 // Using MyClassA from packageA in packageB

 MyClassA objA = new MyClassA();

 }

}

Importing the Whole Package

Alternatively, developers can import all the members of a package into
another package using the import statement followed by the package name
with an asterisk (*). This approach imports all the classes and interfaces of
the specified package.

package com.example.packageB;

import com.example.packageA.*;

public class MyClassB {

Java Exam Preparation 48

 public static void main(String[] args) {

 // Using MyClassA from packageA in packageB

 MyClassA objA = new MyClassA();

 }

}

What standard Java package is automatically imported into a program?

java.lang package is automatically imported into every Java program

This means that classes and interfaces from the java.lang package can be used in a
Java program without the need for an explicit import statement.

The java.lang package is a fundamental package in Java and includes essential
classes and interfaces that are commonly used, such as Object , String , and basic
data types like int and boolean . Since it is automatically imported, you can directly
use these classes and data types without explicitly importing them.

Explain the difference between protected and default access.

Feature protected Access Modifier
Default (Package-Private) Access
Modifier

Scope
Accessible within the same
package and subclasses, even if
they are in different packages.

Accessible only within the same
package.

Outside
Package

Accessible in subclasses outside
the package.

Not accessible in subclasses outside
the package.

Example Code
java public class A {

protected int x; }
java class B { int y; }

Example Usage
java public class C extends

A { void method() {

System.out.println(x); } }

java class D { void method() { B

obj = new B();

System.out.println(obj.y); } }

Inheritance
Useful when you want to expose
a member to subclasses,
regardless of the package.

Useful when you want to limit access to
members within the same package.

Java Exam Preparation 49

How many classes can implement an interface? How many interfaces can a
class implement?

A class in Java can implement multiple interfaces, and an interface can be
implemented by multiple classes.

Can interfaces be extended? Explain with a programing example.

Yes, an interface can extend other interfaces, just as a class subclass or extend
another class. However, whereas a class can extend only one other class, an
interface can extend any number of interfaces. The interface declaration includes
a comma-separated list of all the interfaces that it extends.

interface A {

 void funcA();

}

interface B extends A {

 void funcB();

}

class C implements B {

 public void funcA() {

 System.out.println("This is funcA");

 }

 public void funcB() {

 System.out.println("This is funcB");

 }

}

public class Demo {

 public static void main(String args[]) {

 C obj = new C();

 obj.funcA();

 obj.funcB();

 }

}

Is it possible to define a static method in an interface?

Yes, starting from Java 8, it is possible to define a static method in an interface.

Java Exam Preparation 50

Can an interface have a private method?

Beginning with Java 9, you can have private methods in interfaces.

Since private methods are only accessible within the interface in which it has been
defined, you can take advantage of such methods to write sensitive code which you
would not want to be accessed by any class or interface

Differentiate between instance variable and class variable

Feature Instance Variable Class Variable (Static Variable)

Declaration
Declared inside a class but
outside any method.

Declared with the static keyword.

Memory
Allocation

Each instance of the class has
its own copy.

Shared among all instances of the
class.

Access
Modifiers

Can have different access
modifiers.

Usually declared as private or

public .

Initialization
Initialized when an object is
created.

Initialized when the class is loaded.

Usage
Pertains to the specific instance
of the class.

Shared among all instances of the
class.

Keyword No specific keyword used. Declared using the static keyword.

Accessed Using
Accessed using an object of the
class.

Accessed using the class name
(ClassName.variable).

Mention the differences between constructor and destructor. How can you
use multiple constructors in a class?

Feature Constructor Destructor (Not present in Java)

Purpose
Initializes an object when
created.

Not applicable; Java relies on garbage
collection.

Name Same as the class name.
Not applicable; Java doesn't have
destructors.

Invocation
Automatically invoked when an
object is created.

Not applicable; No direct equivalent in
Java.

Java Exam Preparation 51

Feature Constructor Destructor (Not present in Java)

Usage Used for initialization tasks.
Not present in Java; memory cleanup is
handled by garbage collection.

Multiple
Constructors

Can have multiple constructors
with different parameter lists
(overloading).

Achieved using constructor overloading.

Multiple constructors in a class can be used through constructor overloading, where
you define more than one constructor with different parameter lists.

public class MyClass {

 private int value;

 // Default constructor

 public MyClass() {

 value = 0;

 }

 // Parameterized constructor

 public MyClass(int initialValue) {

 value = initialValue;

 }

 // Another parameterized constructor

 public MyClass(String stringValue) {

 // Convert the string to an integer and set the val

ue

 value = Integer.parseInt(stringValue);

 }

 // Getter method

 public int getValue() {

 return value;

 }

 public static void main(String[] args) {

 // Using different constructors

 MyClass obj1 = new MyClass(); // Default c

onstructor

Java Exam Preparation 52

 MyClass obj2 = new MyClass(42); // Parameter

ized constructor with an int

 MyClass obj3 = new MyClass("123"); // Parameter

ized constructor with a string

 // Accessing values

 System.out.println("Value of obj1: " + obj1.getValu

e());

 System.out.println("Value of obj2: " + obj2.getValu

e());

 System.out.println("Value of obj3: " + obj3.getValu

e());

 }

}

Demonstrate partial implementation of an interface with proper example.

In Java, a class implementing an interface can choose to provide a partial
implementation by declaring the class as abstract and implementing only some of the
interface methods. Other methods can be left unimplemented, to be implemented by
concrete subclasses

// Interface with multiple methods

interface MyInterface {

 void method1(); // Unimplemented method

 void method2(); // Unimplemented method

 void method3(); // Unimplemented method

}

// Abstract class implementing the interface partially

abstract class MyAbstractClass implements MyInterface {

 public void method1() {

 System.out.println("Implemented method1 in the abst

ract class");

 }

 // method2 is not implemented here

Java Exam Preparation 53

 // method3 is not implemented here

}

// Concrete subclass providing the remaining implementation

s

class MyConcreteClass extends MyAbstractClass {

 public void method2() {

 System.out.println("Implemented method2 in the conc

rete class");

 }

 public void method3() {

 System.out.println("Implemented method3 in the conc

rete class");

 }

}

public class InterfacePartialImplementationExample {

 public static void main(String[] args) {

 MyConcreteClass myObject = new MyConcreteClass();

 // Calling the implemented methods

 myObject.method1();

 myObject.method2();

 myObject.method3();

 }

}

What is Exception? There are three categories of exceptions in Java.
Explain each of them with proper example.

An exception in Java is an event that disrupts the normal flow of the program's
instructions during execution.

Java Exam Preparation 54

Checked Exceptions (Compile-time Exceptions): These exceptions are
checked at compile-time. The compiler ensures that these exceptions are
either handled using try-catch blocks or declared in the method's throws
clause.

public class CheckedExceptionExample {

 public static void main(String[] args) {

 try {

 File file = new File("example.txt");

 Scanner scanner = new Scanner(file);

 } catch (FileNotFoundException e) {

 System.out.println("File not found: " + e.ge

tMessage());

 }

 }

}

Unchecked Exceptions (Runtime Exceptions): These exceptions are
not checked at compile-time and are subclassed from RuntimeException .
They usually indicate programming bugs or logical errors.

public class UncheckedExceptionExample {

 public static void main(String[] args) {

 int[] numbers = {1, 2, 3};

 System.out.println(numbers[4]); // ArrayIn

dexOutOfBoundsException

 }

}

Error: Errors are serious, often unrecoverable problems that occur at
runtime. They are typically outside the control of the application and
should not be caught or handled by the program.

public class ErrorExample {

 public static void main(String[] args) {

 try {

 //

Java Exam Preparation 55

 } catch (OutOfMemoryError e) {

 System.out.println("Out of memory erro

r: " + e.getMessage());

 }

 }

}

Discuss about the restrictions of a static method. Demonstrate static
variables, methods and blocks.

Restrictions of a Static Method:

1. No Access to Instance Members:

A static method cannot directly access or refer to instance variables or
instance methods, as it operates at the class level rather than on a
specific instance.

2. Cannot Use this Keyword:

The this keyword is not applicable within a static method since there
is no specific instance associated with it.

3. No Direct Access to Non-Static Members:

A static method cannot directly access non-static (instance) members
of a class. It can only access other static members directly.

public class StaticExample {

 // Static variable (class variable)

 private static int staticVariable = 0;

 // Instance variable

 private int instanceVariable;

 // Static block - executed when the class is lo

aded

 static {

 System.out.println("Static block execute

d");

Java Exam Preparation 56

 // Can initialize static variables here

 staticVariable = 10;

 }

 // Static method

 public static void staticMethod() {

 System.out.println("Static method called");

 // Can only access static members directly

 System.out.println("Static Variable: " + st

aticVariable);

 // Cannot access instanceVariable directly

from a static method

 // System.out.println("Instance Variable: "

+ instanceVariable); // Compilation error

 }

 // Instance method

 public void instanceMethod() {

 System.out.println("Instance method calle

d");

 // Can access both static and instance memb

ers

 System.out.println("Static Variable: " + st

aticVariable);

 System.out.println("Instance Variable: " +

instanceVariable);

 }

 public static void main(String[] args) {

 // Calling static method without creating a

n instance

 staticMethod();

 // Creating an instance of the class

 StaticExample obj = new StaticExample();

 // Calling instance method

 obj.instanceMethod();

Java Exam Preparation 57

 }

}

class shape{

 public double w, h;

 shape(double w){

 this.w =w ;

 }

 shape(double w, double h){

 this.w = w; this.h = h;

 }

}

abstract class TwoDShape extends shape{

 TwoDShape(double w, double h){

 super(w, h);

 }

 TwoDShape(double w){

 super(w);

 }

 abstract double getArea();

};

class Square extends TwoDShape{

 Square(double w, double h){

Java Exam Preparation 58

 super(w, h);

 }

 double getArea(){

 return w*h;

 }

}

class Circle extends TwoDShape{

 Circle(double w){

 super(w);

 }

 double getArea(){

 return 3.14*w*w;

 }

}

class Triangle extends TwoDShape{

 Triangle(double w, double h){

 super(w, h);

 }

 double getArea(){

 return 0.5*w*h;

 }

}

abstract class ThreeDShape extends shape{

 ThreeDShape(double w){

 super(w);

 }

 ThreeDShape(double w, double h){

 super(w, h);

 }

 abstract double getArea();

 abstract double getVolume();

}

class Sphere extends ThreeDShape {

 Sphere(double w){

 super(w);

Java Exam Preparation 59

 }

 double getArea(){

 return 4*3.14*w*w;

 }

 double getVolume(){

 return (4/3)*3.14*w*w*w;

 }

}

class Cube extends ThreeDShape{

 Cube(double w){

 super(w);

 }

 double getArea(){

 return 6*w*w;

 }

 double getVolume(){

 return w*w*w;

 }

}

class Tetrahedron extends ThreeDShape{

 Tetrahedron(double w){

 super(w);

 }

 double getArea(){

 return Math.sqrt(3)*w*w;

 }

 double getVolume(){

 return (Math.sqrt(2)/12)*w*w*w;

 }

};

class HelloWorld {

 public static void main(String[] args) {

 Triangle tr = new Triangle(5, 6);

 System.out.println(tr.getArea());

Java Exam Preparation 60

 }

}

Differences between runtime and compile-time polymorphism

Sr. No. Key
Compile-time
polymorphism

Runtime
polymorphism

1 Basic

Compile time
polymorphism means
binding is occuring at
compile time

R un time polymorphism
where at run time we
came to know which
method is going to
invoke

2 Static/DynamicBinding
It can be achieved
through static binding

It can be achieved
through dynamic binding

4. Inheritance
Inheritance is not
involved

Inheritance is involved

5 Example

Method overloading is
 an example of
compile time
polymorphism

Method overriding is an
example of runtime
polymorphism

Example of Compile-time Polymorphism

public class Main {

 public static void main(String args[]) {

 CompileTimePloymorphismExample obj = new CompileTimeP

loymorphismExample();

 obj.display();

 obj.display("Polymorphism");

 }

}

class CompileTimePloymorphismExample {

 void display() {

 System.out.println("In Display without parameter");

 }

 void display(String value) {

Java Exam Preparation 61

 System.out.println("In Display with parameter" + valu

e);

 }

}

Example of Runtime Polymorphism

public class Main {

 public static void main(String args[]) {

 RunTimePolymorphismParentClassExample obj = new RunTi

mePolymorphismSubClassExample();

 obj.display();

 }

}

class RunTimePolymorphismParentClassExample {

 public void display() {

 System.out.println("Overridden Method");

 }

}

public class RunTimePolymorphismSubClassExample extends Run

TimePolymorphismParentExample {

 public void display() {

 System.out.println("Overriding Method");

 }

}

