
Theory of Computation

ASH2101008M

NB: There are many mistakes. Read at your own risk.

What is TOC?

- A branch of theoretical CS

- Whether and how efficiently a problem can be solved on

computational model, using an algorithm

TOC has major 3 branches.

- Automata theory: deals with various definition and

properties of mathematical model

- Computability theory: what can and cannot be computed

- Computational Complexity theory: it groups computable

problem based on hardness

Model of Computation: mathematical abstraction of Computer

Definition: describe a object and notations.

Theorem: mathematical statement basis on previously

stablished statement.

Proof: convincing logical argument that statement is true.

Lemma: A minor result (theorem, it’s the lemma) to prove

another theorem.

Corollaries: A result in which the proof relies heavily.

Deductive Proof: If H (hypothesis), then C (conclusion)

- Sequence of statement

- hypothesis to conclusion

Contradiction Proof:

- Assume the theorem is false, this assumption leads to

false

Example: sqrt (2) is irrational.

Induction proof:

- All elements of infinite set have a specific property

- 2 Steps

o Base case

o Induction Step (Assume S(k), then S(k+1))

o Example: Σn = n(n+1)/2

Contraposition Proof:

- P=>Q is equivalent to ¬Q => ¬P

- Assume ¬Q is true, prove ¬P is true

- Example : If n is even, n2 is even

Counter Example proof:

- Show an example to disprove the claim

Automata theory

- Study of abstract machines and computational problems

that can be solved by these machines

Automata:

- abstract machine/computing device

- mathematical model of a system that involves with input,

output, state, transition etc.

Consists of

- States: Circle, description of the status of the system

- Transition: Arrow, input, one state to another

Basic Definition:

1. Symbols

a. Symbols are indivisible objects or entity that

cannot be defined.

2. Alphabets

a. Finite set of symbols

b. Σ

3. String

a. Finite sequence of symbols

b. Denoted by w,z,y,z

4. Empty String

a. Denoted by ε

b. The length of the empty string is 0

5. Length of a string

a. Denoted by |W|

6. Power of Alphabets

a. Set of string length k, Σk

i. Σ0 = {ε}

b. Set of all string including empty, Σ* = Σ0 U Σ1 U ...
Σn

c. Set of all String w/o empty string, Σ+ = Σ1 U Σ2 U
Σn

7. Concatenation of a string

a. x = 01, y=10 concatenation of x and y, xy = 0110, yx =
1001

8. Language

a. A language over an alphabet is a set of strings over

that alphabet.

b. Set of all Σ*

c. Empty language Φ

Membership Problem:

- Given a word and a Language, we want to check word

belongs to the language or not, this is called

membership problem.

3 requirements of automata:

- Taking input

- Producing output

- May have Temporary storage

- Control unit: can change state according to transition

function

Finite automata

- An abstract computing device

- No temporary storage

- Used to recognize pattern

- Accept or reject input depending on pattern

2 types

- DFA (Deterministic Finite Automata)

- NFA (Non-Deterministic Finite Automata)

DFA NFA
one state transition in DFA May have more than one
Cannot ε Can use ε
Understand as one machine Multiple machine
have max. one possible next
state for one input

May have multiple next
possible states for one
input

Difficult to construct Easier
Time less Executing time more
All DFA = NFA All NFA != DFA
δ: QxΣ -> Q δ: QxΣ -> 2^Q

State:

- Description of the Status of system waiting to execute a

transition

- Denoted by Circle/Vertex

Transition:

- set of actions to execute when a condition is fulfilled

or an event received.

- Denoted by Arrow/Edge

DFA

Deterministic finite automata (or DFA) are finite state

machines that accept or reject strings of characters by

parsing them through a sequence that is uniquely determined

by each string.

From Nazia ma’am’s Slide

Lecture 3:

Extended Transition Functions

- Denoted by �̂�

- Takes state q and string w (where Transition function

usually takes only alphabet)

- Induction steps

 From : Pollock bhai

Lecture 4:

Lecture: 5

DFA with exactly 𝑛 alphabets

i. Number of states: n+2

DFA with at least n alphabets

i. Number of states: n+1

DFA with at most n alphabets

i. Number of states: n+2

Minimizing DFA

- Equivalence Theorem

Table Filling Method / Myhill-Nerode Theorem

NFA

- Non-deterministic Finite Automata

- Transition from a state on an input symbol can be to any

set of states

- DFA: Q x Ʃ→ Q

- NFA: Q x Ʃ→ 2Q

- No need to add dead state/trap state

- Input can be empty

Extended Transition for NFA

From: Pollock bhai

Conversion of NFA to DFA:

If there are any empty state/phi in NFA, a dead state should

be added for that in NFA.

Set Construction Method:

ε-transitions

- NFA allows go to next state w/o any input

- ε means empty

Epsilon-Closure

- Denoted by ε*

- All the states than be reached from particular state

only by seeing the ε symbol

Epsilon-NFA to NFA:

- If a state (let x) goes to final state only by seeing ε

in E-NFA, then the state (x) will be a final state in

the NFA

- Using epsilon-closure

Epsilon-NFA to NFA

Epsilon NFA to DFA

