
TOC 1

TOC
Created

Last edited time

Created by B Borhan

Tags CSTE TOC Year 2 Term 1

What do you mean by theory of computation ? Discuss about it's branches
?

The theory of computation is a field of computer science that deals with the
study of algorithms, formal languages, automata, and computational
complexity. It seeks to understand the fundamental capabilities and
limitations of computational systems and machines.

1. Automata Theory:

Automata are abstract models that describe the behavior of
computational systems. They can be used to analyze the capabilities of
different machines and determine the types of languages they can
recognize.

Finite Automata (FA), Pushdown Automata (PDA), and Turing Machines
(TM) are common models studied in automata theory.

2. Computability Theory:

Computability theory explores the boundaries of what can be
computed. It investigates the notion of an effective method or algorithm
and studies the concept of undecidability.

Turing's halting problem is a famous example of an undecidable
problem.

3. Complexity Theory:

Complexity theory focuses on the resources required to solve
computational problems, such as time and space. It classifies
problems based on their inherent difficulty and studies the
relationship between different classes of problems.

@August 4, 2023 6:49 PM

@August 7, 2023 9:02 PM

TOC 2

Classes like P (polynomial time), NP (nondeterministic polynomial time),
and NP-complete are central to complexity theory.

Difference between theory, lemma and coronary

Theory Lemma Coronary

A mathematical statement based on previously
established statement

A minor result
to prove another
theorem

A result in which
the proof relies
heavily

An example of a theory is Albert Einstein's
general relativity theory, which describes the law
of gravitation and its relationship to other natural
forces.

.. ..

Proof by counterexample

Proof by counterexample is a method of mathematical or logical
reasoning used to demonstrate that a given statement or conjecture is
false. It involves providing a specific example that contradicts the statement
being claimed, thus disproving its general validity.

The Language of a DFA

The Language of an NFA

Difference between more and mealy machine with example

Moore Machine Mealy Machine

Output depends only upon the present
state.

Output depends on the present state as well as
present input.

TOC 3

Moore Machine Mealy Machine

Output is placed on states. Output is placed on transitions.

Easy to design. It is difficult to design.

If input changes, output does not
change

If input changes, output also changes.

More states are required. Less number of states are required.

What do you mean by epsilon-closure ?

Epsilon closure refers to the set of all states that can be reached from a
given state in a non-deterministic finite automaton (NFA) by following
epsilon transitions (transitions that do not consume any input symbol).

What are the uses of epsilon-transition?

Non-determinism: Epsilon-transitions are a key feature of non-deterministic
finite automata (NFA). They allow the automaton to move from one state to
another without consuming any input symbol.

Epsilon-closure: Epsilon-transitions are used to compute the epsilon-
closure of a state in an NFA.

Conversion from NFA to DFA: Epsilon-transitions are utilized in the
conversion process from an NFA to a deterministic finite automaton (DFA).

TOC 4

Regular expression construction: Epsilon-transitions are employed in
constructing regular expressions from NFAs.

Language recognition and parsing: Epsilon-transitions play a role in
determining whether a given string is accepted by an automaton or not.

What is regular expression?

In the theory of computation, a regular expression is a formal notation that
represents a regular language. It is an algebraic-like expression that
describes a set of strings or a pattern of characters. Regular
expressions are used to define and recognize regular languages in the
context of formal language theory.

The set of strings over alphabet {0, 1} that consists equal number of 0's
and I's such that no prefix has two more 0's than 1's, nor two more I's than
0's.

(01+10)*

The set of strings over alphabet (a, b, c) containing at least one a and at
least one b.

// ***a**b*** + ****b***a****

R1 = (a+b+c)* a(a+b+c)* b(a+b+c)*

R2 = (a+b+c)* b(a+b+c)* a(a+b+c)*

RE for the given question R = R1+R2

R = (a+b+c)* a(a+b+c)* b(a+b+c)* + (a+b+c)* b(a+b+c)* a(a+b+c)*

Regular set of

No two adjacent one

Regular set of

No adjacent aa, cc, ac

Define Arden's theorem.

 (0 + 010) ∗

{ϵ, 0, 010, 00, 0010, 010010, 01000, 00100100100,}

(ab) ∗ (bb) ∗ bc

{bc,abbc, bbbc,abbbbc,ababbc,ababbbbc, ...}

TOC 5

If P and Q are two regular expressions over Ʃ and if P does not contain ε
then the following equation in R given by R=Q+RP has a unique solution i.e.,
R=QP*.

Show the RE for the following DFA using state-elimination technique:

TOC 6

Using Arden’s theorem:

TOC 7

Why pumping lemma is required? Write down the properties of pumping
lemma.

The pumping lemma is a tool used in formal language theory to prove a
language not a regular.

For any regular language L, there exists an integer P, such that for all w in L

|w|>=P

We can break w into three strings, w=xyz such that.

(1)lxyl < P

(2)lyl > 1

TOC 8

(3)for all k>= 0: the string is also in L

Differentiate between ambiguity and inherent ambiguity with examples

Removable ambiguity inherent ambiguity

It can be removed It’s not

This refers to ambiguity which is present in a
grammar and we can remove it by writing
another grammar that is unambiguous
produces the same language

This is the situation when every grammar
that generates a given language, say L
is ambiguous we say the language is
inherently ambiguous

. E --> E + E | E * E | id
L = {a^m b^m c^n | m,n >= 0} U
 {a^m b^n c^n | m,n >= 0}

Consider the following grammar and show a derivation tree for the string a
+ b * c:

Derivation tree is a graphical representation for the derivation of the
given production rules for a given CFG

Then prove that the grammar is an ambiguous grammar

Because there is an another derivation tree

xy zk

E = E +E∣E ∗ E∣a∣b∣c

TOC 9

Show how to eliminate ambiguity from the grammar.

We can use Precedence and Associativity to remove the ambiguity from
some grammar.

How

 = First level of Precedence

 Second level of Precedence

 Generating Basic Units/Terminal

Simply make the grammar Left Recursive by replacing the left most
non-terminal

The unambiguous grammar will contain the productions having the
highest priority operator (“*” in the example) at the lower level and vice
versa. The associativity of both the operators are Left to Right.

Write down the language of a Pushdown Automata (PDA).

E

T =

F =

E = E + T ∣T

E = E + T ∣T
T = T ∗ F ∣F
F = a∣b∣c

TOC 10

TOC 11

1. Since S is in right side we have to add S' -> S :

2. Removing Null Pointer : There's no null pointer

3. Remove Unit Production:
After removing S' -> S :

S − >′ S

S− > bA∣aB
A− > bAA∣aS∣a
B− > ABB∣bS∣b

TOC 12

4. Removing Useless symbol

4. Replacing the productions that has more than two variables in RHS

5. Change in Production where terminal is left of variable where P → qA

What is Turing machine ? Describe formal notation of Turing machine?

A Turing machine is an computational model like FA, PDA which works on
unrestricted grammar.

Formal Notations:

Q = Non-empty set of states

X = set of tape Alphabets

 = Input states

 = Transition function

 = Starting state

S − >′ bA∣aB
S− > bA∣aB,

A− > bAA∣aS∣a,
B− > aBB∣bS∣b

S − >′ bA∣aB
S− > bA∣aB

A− > bAA∣aS∣a
B− > AX∣bS∣b
X− > BB

S − >′ Y A∣ZB
S− > Y A∣ZB
A− > ZM∣ZS∣S
B− > AX∣Y S∣b
X− > BB

Y− > b

Z− > a

M− > AA

M = {Q,X,Σ, δ, q ,B,F}0

Σ

δ Q ∗X− > Q ∗X ∗ {LeftShigt,RightShift}

q0

TOC 13

B = Blank Symbol

F = Final State

Fermat’s Last Theorem

Fermat's last theorem, also called Fermat's great theorem, the statement
that there are no natural numbers (1, 2, 3,…) x, y, and z such that

 , in which is a natural number greater than 2.

Fermat’s Little Theorem states that if p is a prime number, then for any integer
a, the number a p – a is an integer multiple of p.

Design a Turing machine that takes a input as Number and adds 1’s to it
binary.

Partial Recursive Function

A function which is not defined for some inputs of the right type, that
is, for some of a domain. For instance, division is a partial function since
division by 0 is undefined (on the Reals).

A partial function is called partial recursive if it can be computed
by a Turing machine; that is, if there exists a Turing machine that
accepts input x exactly when f(x) is defined, in which case it leaves the
string f(x) on its tape upon acceptance.

By Church's thesis, a function is recursive if and only if it is
computable.

Define extended transition function.

An extended transition function traces the path of an automaton and
determines the final state when an initial state q and an input string x are
passed through it.

Steps of the recursive algorithm to solve

1. Base Condition

x +n

y =n zn n

δ̂

TOC 14

2. Recursive Solution

Process NFA using extended transition function

Describe briefly about the operators of regular expression

Union: If R1 and R2 are regular expression then R1 | R2 (R1 U R2 or R1 +
R2) is also.

 L(R1|R2) = L(R1) U L(R2).

Concatenation: If R1 and R2 are regular expression then R1R2 is also.

L(R1R2) = L(R1) concatenated with L(R2).

Kleene closure : If R1 is regular expression then R1* is also.

 L(R1*) = epsilon U L(R1) U L(R1R1) U L(R1R1R1) U ...

Closure has the highest precedence, followed by concatenation, followed by union.

When a symbol is useful for a grammar ? Explain.

A symbol can be useful if it appears on the right-hand side of the production
rule and takes part in the derivation of any string/reachable from start

(q, ϵ) =δ̂ q

(q,xa) =δ̂ δ((q,x),a)δ̂

TOC 15

T → aaB | abA | aaT
A → aA
B → ab | b
C → ad

Where T,A,B is useful but C not.

 to

How to draw a Parse tree. Explain.

A parse tree is a graphical representation of how the symbols in a
sentence can be derived from the non-terminal symbols of a grammar

Steps:

Start with the start symbol as root

Apply Production rule from the root

ϵ−NFA DFA

TOC 16

Continue expanding production rule recursively until all leaf nodes are
terminals

Finalize the parse tree

Example:
S -> sAB
A -> a
B -> b

Rijk Method

K==0

TOC 17

K ≠ 0

Define language in automata with example

A language is a subset of for some alphabet .

Example : The possible language for length 2,

Prove that, is not a regular language.

Concept:

Pumping lemma is used to prove a language not regular.

Theorem : If A is a regular language has a pumping length ‘P’ such that
any string S where maybe divided into three parts
that the following condition must be true

R =ij
k R +ij

k−1 R (R) Rik kk
k−1 ∗

k j
k−1

Σ∗ Σ

Σ = {a, b}
L = {aa,ab, ba, bb, ..}

L = {0 10 ∣n >n n 0}

∣S∣ ≥ P S = xyz

TOC 18

, for every

Prove:

Suppose that, is a regular language.

Pumping length is 4.

Case 1:

 has only 0’s

Case 2:

 has only 1’s

…

Case 3:

 has 01

…

∣xy∣ ≤ P

∣y∣ > 0

xy z ϵ Ai i > 0

L

w = 000011111

y

∣xy∣ ≤ 4

∣y∣ > 0

xy z =2 00000011111 ϵ A

y

y

TOC 19

What are the strategies for constructing a regular expression from a finite
automation using state-elimination method. Explain

Steps:

If there exists any incoming edge to the initial state, then create a new initial
state having no incoming edge to it

If there exists multiple final states in the DFA, then convert all the final states
into non-final states and create a new single final state

If there exists any outgoing edge from the final state, then create a new final
state having no outgoing edge

After following the above rules we can eliminate all intermediate state one by
one.

Describe formal notation of pushdown automata.

Pushdown Automata is a finite automata with extra memory called stack which
helps Pushdown automata to recognize Context Free Languages.

A PDA can be formally described by 7-tuples.

 : Non-empty set of states

 : Nonempty set of input symbols

 : Nonempty set of pushdown symbols

 : Transition function

 : Initial State

 : Initial Symbol on the pushdown store/stack

 Final State

Design a PDA language to accept a language

{Q,Σ, τ , δ, q ,Z ,F}0 0

Q

Σ

τ

δ Qx{Σ∪ ∈}xΓ → QxΓ∗

q0

Z0

F :

L = {a b c ∣i, j,k ≥i j k

0 and i = j or j = k}

TOC 20

The transitions on state are self-loop

Define Chomsky Normal Form(CNF)

A grammar where every production is either of the form A → BC or A → c (where A,
B, C are arbitrary variables and c an arbitrary symbol).

A CFG is in CNF if all production rules satisfy following conditions

Start symbol symbol generating ε

A non-terminal generating at most two non-terminals

A non terminal generating a terminal

A→ ϵ

S → AB

A→ a

TOC 21

What is transition Diagram ?

Transition diagram can be interpreted as a flowchart for an algorithm
recognizing a language.

Which is constructed by

There is a node for each state in Q, represented by the circle

There is a directed edge from a node p to node q labeled if

Starting state, there is an arrow with no source

Final states indicating by a double circle

Write down the application of Context Free Grammar

Context Free Grammar is a formal grammar which is used to generate all
possible strings in a given formal language.

Applications:

Used in compilers (Such GCC) parsing

define the syntax of programming languages

Used to define the high level structure of a programming language

Natural Language Processing (NLP)

Draw a PDA for the language

δ(p,a) = p

L =wwr {WW ∣W is in (0 +R 1) }∗

TOC 22

Define the language of a grammar

Language of a grammar is the set of all strings that can be generated by that
grammar.

Useful symbols

 is Useless.

Grammar :

(i)

= {a, b,A,B,S,D}

C

S → aAa∣bBb∣ϵ
A→ a

B→ b

D → A∣B∣ab

TOC 23

Eliminating :

Eliminating & (Unit Production):

 Leftmost Derivation

S →

 (Rule 1)

 (Rule 2)

 (Rule 1)

 (Rule 2)

 Rightmost Derivation

 (Rule 1)

 (Rule 2)

 (Rule 2)

 (Rule 1)

(ii)

S → ϵ

S → aAa∣bBb
A→ a

B→ b

D → A∣B∣ab

(iii)

D → A D → B

S → aAa∣bBb
A→ a

B→ b

D → a∣b∣ab

(i)

aAS

aSbAS

aabAS

aabbaS

aabbaa

(ii)

S → aAS

aAa

aSbAa

aSbbaa

aabbaa

TOC 24

 Parse tree

Leftmost derivation

(iii)

(i)

E → E ∗ E

II ∗ E

aI ∗ E

aI ∗ (E)

aI ∗ (E +E)

TOC 25

Rightmost derivation

aI ∗ (II +E)

aI ∗ (IbI +E)

aI ∗ (abI +E)

aI ∗ (abI + I0)

aI ∗ (abI + II0)

aI ∗ (abI + bI0)

aI ∗ (abI + bIa0)

E → E ∗ E

E ∗ (E)

E ∗ (E +E)

E ∗ (E + I)

E ∗ (E + II)

E ∗ (E + bI)

E ∗ (I + bI)

E ∗ (I0 + bI)

E ∗ (a0 + bI)

I ∗ (a0 + bI)

I0 ∗ (a0 + bI)

II0 ∗ (a0 + bI)

IIa0 ∗ (a0 + bI)

bIa0 ∗ (a0 + bI)

TOC 26

TOC 27

Instantaneous Description (ID)

Instantaneous Description (ID) is an informal notation of how a PDA
“computes” a input string and make a decision that string is accepted or
rejected.

TOC 28

Type of Complexity Classes

P : that can be solved by a deterministic machine in polynomial time.

NP: can be solved by a non-deterministic machine in polynomial time

TOC 29

NP-hard: An NP-hard problem is at least as hard as the hardest problem in
NP and it is a class of problems such that every problem in NP reduces to NP-
hard.

NP-Complete: A problem is NP-complete if it is both NP and NP-hard.

DFA NFA

DFA stands for Deterministic Finite
Automata.

NFA stands for Nondeterministic Finite
Automata.

For each symbolic representation of the
alphabet, there is only one state transition
in DFA.

No need to specify how does the NFA react
according to some symbol.

DFA cannot use Empty String transition. NFA can use Empty String transition.

DFA can be understood as one machine.
NFA can be understood as multiple little
machines computing at the same time.

In DFA, the next possible state is distinctly
set.

In NFA, each pair of state and input symbol can
have many possible next states.

DFA is more difficult to construct. NFA is easier to construct.

DFA requires more space. Less

All DFA are NFA. Not all NFA are DFA.

δ: QxΣ -> Q δ: Qx(Σ U ε) -> 2^Q

Epsilon move is not allowed in DFA Epsilon move is allowed in NFA

