
OOP x AI 1

OOP x AI
Created

Last edited time

Created by B Borhan

Tags OOP Year 2 Term 1

Some Basics
Namespace

allows to organize code elements, avoiding naming conflicts/collision when the
code base include multiple libraries

 → Scope Operator/Scope Resolution Operator

Structure Class

If access specifier is not declared explicitly,
then by default access specifier will be
public.

If access specifier is not declared explicitly, then
by default access specifier will be private.

Syntax of Structure struct structure_name{//
body of the structure.}

Syntax of Class class class_name{// body of the
class.}

The instance of the structure is known as
"Structure variable".

The instance of the class is known as "Object of
the class".

OOP : Object Oriented Programming
a programming paradigm

it allows decomposition of a problem into number of entities called “objects” and
then builds data and function around this objects

Feature:

Emphasize on data rather than procedure

Programs are divided into “object”

Data is hidden and cannot accessed by external functions

Object my communicate with each other

@July 26, 2023 7:52 PM

@July 31, 2023 9:52 PM

::

OOP x AI 2

New data and function can be easily added

Class
a class is a blueprint or template that define the structure and behavior of objects

it serves as a user define data type

Members of a class

Variable → data member

Function → member function/methods

Access Specifiers

Public: Can be accessed from publicly/outside of class too

Private: Can be accessed from inside the class

Protected: Can be access from inside the class and the inherited class

class myClass{
 int z; // private

 public :
 int x, y; // data member

 // member function
 int setter(int a, int b){
 x=a; y=b;
 }

 int show(){
 cout << x+y << "\n";
 }

 int functionCanBeWrittenFromOutside();
};

int myClass::functionCanBeWrittenFromOutside(){
 return x;
}

Objects
an object is an instance of class that combines data and behavior

OOP x AI 3

can be created using new “operators”

an object occupies memory space

Private and Protected members can’t be accessed from object (a compile time
error) , but public members

myClass ob1;
ob1.setter(1,2);
ob1.show();

Passing object

Constructor function is not called, because the object is not initializing but
copying

the function terminates and the copy destroyed, the destructor function is
called

class myClass{
....
public:
int x;
...
};
int sq(myClass ob){
 return ob.x * ob.x ;
}
int main(){
...
 myClass ob1, ob2;
 ...
 cout << sq(ob1) << "\n";
..
}

Returning Object from Functions

class myClass{
...
};

myclass func(){
 myClass ob1;
 ...
 ...
 return ob1;
}

int main(){

OOP x AI 4

..
myClass ob;
ob = func();
..
}

Array of Objects

class yourClass{
int x;
...
public :
myClass(int a){
 x = a;
};
...
};

class myClass{
int x, y, z;
...
public :
myClass(int a, int b, int c){
 x = a; y=b; z=c;
};
...
};

int main(){
..
// one dimensional array of object with one argument
yourClass ob1[3] = {1, 2, 3};
// or
yourClass ob1[3] = {yourClass(1), yourClass(2), yourClass(3)};
// accessing
ob1[0].show();

// one dimensional array of object with more than one argument
myClass ob1[3] = {yourClass(1,2,3), yourClass(2,3,1), yourClass(3,1,2)};

// multi-dimentsional array of object
yourClass b1[2][2] = {
 yourClass(1), yourClass(2),
 yourClass(3), yourClass(4),
};
// accessing
b1[0][0].show();
...
}

Using Pointers to Objects

OOP x AI 5

Same as other data type. If a pointer increments, it points the next object. If
decrements → point the previous object.

class myClass{
...
...
};

int main(){
 ...
 myClass ob[4] = {1,2,3,4};
 myClass *ptr;
 ptr = ob;
 for(int i=0; i<=3; i++){
 cout << p->show() << "\n";
 p++;
 }
 ..
}

this pointer

This is a keyword that is used to represent an object that invokes (call,
Āhbāna) the member function

a pointer that is automatically passed to any member function when it is
called, it is a pointer to the object that generates the call

Syntax:

Syntax for referring instance variable

this->data_member = value;

Syntax for referring to current object of class

this*

Example:

class myClass{
int x, y, z;

public:
void set(int a, int b, int c){
 this->x = a;
 this->y = b;

OOP x AI 6

 this->z = c;
}
...
};

Applications

Distinguish data members from local variables

Example: Distinguishing between the class members and the
parameters with same name.

class myClass{
 int x, y, z;
 public:
 void set(int x, int y, int z){
 this->x = x;
 this->y = y;
 this->z = z;
 ..
 }
...
};

Method Chaining

Method chaining is a very useful feature of this pointer. It helps in
chaining the method togethers for erase and cleaner code.

Example: obj→set(10)→replace→(9)→print();

#include<bits/stdc++.h>
using namespace std;

class myClass{
 int x;

 public:
 myClass & set(int x){
 this->x = x;
 return *this;
 }

 myClass &replace(int x){
 this->x = x;
 return *this;
 }

 void print(){
 cout << this->x << " ";

OOP x AI 7

 }

};

int main(){
 myClass obj;
 obj.set(10).replace(20).print();
}

Allocating and deallocating memory

Allocating memory

// Syntax
type *var_name = new type;

// Variable pointer
int *ptr = new int;
char *ptr = new char;

// Giviing initialed value
int *ptr = new int(8);

// Checking allocation error
if(!ptr){
 cout << "Allocation error";
}

// One Dimension Array
int *ptr = new int[100];

// Two-dimensional array
int row=10, col=10;
int **table = new int*[rows];
for(int i=0; i<row; i++){
 table[i] = new int[col];
}

Deallocating memory

//Syntax
delete ptr;
delete [] ptr; // array
ptr = NULL;

// Variable
delete ptr;
ptr = NULL;

// One-dimensional array
delete [] ptr;
ptr = NULL;

// Two Dimensional Array

OOP x AI 8

for(int i=0; i<row; i++){
 delete [] table[row];
}
delete[] table;
table = NULL;

If we create an array of objects, then destructor will be called when we
deallocate or delete or free the array of object.

Choosing new/delete over malloc/free

Type safety: automatically call constructor and destructor

Easier memory management : no need to calculate memory

No need to explicit type casting

Example:

Create a class that contains a person's name and telephone number. Using new ,
dynamically allocate an object of this class and put your name and phone number
into these fields within this object.

#include<bits/stdc++.h>
using namespace std;

class Person{
 string name;
 string telephone;
 public:
 Person(string name, string telephone){
 this->name = name;
 this->telephone = telephone;
 }
 void show(){
 cout << "Name: " << this->name << "\n" << "Telehpone: " << this->telephone;
 }
};

int main(){
 string name, telephone; cin >> name >> telephone;
 Person *p = new Person(name, telephone);
 p->show();
}

References

A reference can be defined as an alternative name of a variable

OOP x AI 9

Sign : (ampersand)

Syntax:

int data = 10;
int &ref = data;

Reference can be used in 3 ways

Independent Reference

An independent reference is a reference variable that in all effects is
simply another name for another variable

We cannot reference another reference

We cannot obtain the address of a reference

We cannot create arrays of reference

int main(){
 int data = 10;
 int &ref = data;
 cout << ref << "\n"; // Output:10
}

Passing reference to the function as parameter/Call-by-reference

While passing the reference to the function, the changes made inside the
function will also be reflected/changes outside.

void increment(int &n){
 n++;
}
int main(){
 int x=5;
 increment(x);
 cout << x << "\n"; // Output :6
}

Returning Reference

While returning the reference an implicit pointer is also returned

&

OOP x AI 10

the returning variable must be global/static

no local and constant variable is returned

function calling is done on the left-hand side of the assignment
operator for assigning value

#include <bits/stdc++.h>
using namespace std;

int n;

int &func(){
 return n;
}

int main() {
 // assigning value
 func() = 10;

 //getting the value
 int *p;
 p = &func();

 //getting the value by reference
 int &ref = func();

 cout << ref << " " << *p << "\n";
}

Advantages of Reference

It helps modifying or changing the values inside function without passing
the actual arguments

It helps with operator overloading

It helps with writing less error-prone code

Avoid unnecessary copy of data

Example: Swap two numbers using reference.

void swapp(int &a, int &b){
 t=a;
 a=b;
 b=t;
}
int main(){
 int x=8, y=80;
 swapp(x, y);
 cout << x << " " << y << "\n";
}

OOP x AI 11

Passing reference to Objects

passing object by call-by-value → a copy of the object is made →
constructor isn’t called but destructor called when function returns

passing object call-by-reference → no copy is made → constructor isn’t
called and destructor isn’t called when function returns

class myClass{
......
};

int func(myClass &ob){
 ...
 ...
}

int main(){

 myClass obj;
 int x = func(obj);

}

Constructor
a special member function of a class that is automatically called when an object
of that class is created

Rules

No return Type

Same name as the class

Types

Default/Non-Parameterized : constructor function with no
arguments/parameter

Parameterized Construction: constructor function with arguments

Copy Constructor: a constructor that creates a new object by initializing it
with an existing object of the same class

initializing with an existing object

OOP x AI 12

passing object as function argument

using the class as a return-type of any function

//Default or Non-parameterized Constructor
class amarClass{
 int x;
 public :
 amarClass(){
 cout << "Constructor" << "\n";
 }
};
int main(){
 amarClass a;
}

// Parameterized Constructor
class apnarClass{
 int x;
 public :
 //01
 apnarClass(int a, int b){
 x = a;
 cout << "Constructor " << a << " " << b << "\n";
 }
 //02 Using default arguments
 apnarClass(int a=0){
 x = a;
 cout << a << " ";
 }
};
int main(){
 apnarClass b(8, 80);
 apnarClass c; // 02
}

//Copy Constructor
class array{
 int *p;
 int size;
 public:
...
 array(int sz){
 p = new int[sz];
 if(!p){
 exit(1);
 }
 size = sz;
 }
 array(const array &a){
 p = new int[a.size];
 if(!p) exit(1);
 size = a.size;
 for(int i=0; i<size) i++){
 p[i]=a.p[i];
 }

OOP x AI 13

 }
 void put(int i, int j){
 if(i >= 0 && i < size){
 p[i]=j;
 }
 }
....
};
int main(){
...
 array obj(4);
 for(int i=0;' i<4; i++) put(i, i+8);
 array obj2(obj); // copy constructor
....
}

For Global Objects :

declaring object globally (before main function)

object’s constructor is called once, when program first begins execution

class tomarClass{
....
};
tomarClass tumi; // declaring globally
int main(){
}

For Local Objects:

the constructor is called each time, the declaration statement execute

class tomarClass{

};

int main(){
 tomarClass tumi; // declaring locally
}

Overloading Constructor Function

Overloading Function: multiple functions with the same name to be defined
in the same scope but with different parameter lists

Reasons

to gain flexibility

to support array

OOP x AI 14

to create copy constructor

class myClass{
 int x;
 public:
...
 myClass(){ x = 0; }
 myClass(int a) { x = a; }
 myClass(int a, int b) { x=a*b;}

};

int main(){
...
myClass a, b(1), c(1, 2);
...
}

Assignment operation

class myClass{
.....
};

int main(){
 myClass a, b;
 ...
 b = a;
}

Destructor
a special member function of class that is invoked automatically when an object of
that class is about to be destroyed

Rules

No return type

Same name as class

a tilde (~) sign before name of the class

class myClass{
 public :
 ~myClass(){

OOP x AI 15

 cout << "Destructor" << "\n";
 };
};

Calling

Implicitly Called by the compiler when an object goes out of scope

Explicitly deleted using delete operator

Local/Global

Local objects are destroyed → they go out of scope

Global objects are destroyed → the program ends

Home Work:

Create a class called stopwatch that emulates a stopwatch that keeps track of
elapsed time. Use a constructor to initially set the elapsed time to 0. Provide two
member functions called start() and stop() that turn on and off the timer,
respectively. Include a member function called show() that displays the elapsed
time. Also, have the destructor function automatically display elapsed time when a
stopwatch object is destroyed. (To simplify, report the time in seconds.)

...
#include<ctime>
..
class stopwatch{
 clock_t start, end;
 clock_t object_start = 0;
 double elapsed_time;

 public:
 stopwatch(){
 elapsed_time = 0;
 object_start = clock();
 }
 ~stopwatch(){
 end = clock();
 elapsed_time = (double) (object_start - end)/CLOCK_PER_SECOND;
 cout << elapsed_time << "\n";
 }
 void start(){
 start = clock();
 }

 void stop(){
 stop=clock();
 }

OOP x AI 16

 void show(){
 elapsed_time = (double)(end-start)/CLOCK_PER_SECOND;
 cout << elapsed_time << "\n";
 }
};

Create a class called box whose constructor function is passed three double
values, each of which represents the length of one side of a box. Have the box
class compute the volume of the box and store the result in a double variable.
Include a member function called vol() that displays the volume of each box object.

class box(){
 double a, b, c, volume;
 public:
 box(double x, double y, double z){
 a=x; b=y; c=z;
 volume = a*b*c;
 }
 void vol(){
 cout << volume << "\n";
 }
}

Inheritance
এক� ��া�ািমং �ি�য়া, �যখােন এক� �াস আেরক� �ােসর �বিশ���িল (members function,
method) ব�বহার করেত পাের।

is the mechanism by which one class can inherit the properties of another class

Base Class: The class from which the child class inherits its properties is called
the parent class or base class.

Derived Class: The class that inherits the characteristics of another class is
known as the child class or derived class

Access Specifier of Base
Class

Public
Inheritance

Private
Inheritance

Protected
Inheritance

OOP x AI 17

Access Specifier of Base
Class

Public
Inheritance

Private
Inheritance

Protected
Inheritance

Public Public Private Protected

Private Not Inherited Not Inherited Not Inherited

Protected Protected Private Protected

class base{
 int x, y, z;
 ..
 public :
 ..
 int sum(){
 z = x+y;
 }
 ...
}

// Public Inheritance
class derived : public base{
....
}

// Private Inheritance
class derived2 : private base{
....
}

// Protected Inheritance
class derived3 : protected base{
....
}

Constructor in inheritance

The constructor of base class (default or non-parameterized) and derived class
called in sequence (first base class and then derived class)

To call parameterized-constructors of base class, we have to maintain it
explicitly.

class base{
...
public:
base(){
 cout << "Default Constructor from base class\n";
}
base(int x){
 cout << x << "\n";
}
};

OOP x AI 18

class sub{
...
public:
sub(){
 cout << "Default constructor from sub class\n";
}
sub(int a, int b) : base(b)// calling base(int x) explicitly
{

}
};

Destructor are called in a reverse order

First, derived class destructor

Then, Base class destructor

Types of Inheritance

Single Inheritance

most primitive among all types

a single class inherits the properties of base class

class base {
...
};

class sub : public base{
.....
};

Multiple Inheritance

a class can inherits properties of multiple base classes

class base1{
....
};

class base2{
....
};
// 01
class sub : public base1, public base2 {
.....
.....
 //calling parameterized constructor

OOP x AI 19

 sub(int x, int y, int z) : base1(x, y, z), base2(x, y){

 }
...
};

//02
class sub2 : public base1, private base2 {
.....
.....
 //calling parameterized constructor
 sub2(int x, int y, int z) : base1(x, y, z), base2(x, y){

 }
...
};

Constructor Call : sub → base1 → base2 (check the inheritance order in
code)

Destructor Call: base2 → base1 → sub (check the inheritance order in
code)

Multilevel Inheritance

a derived class created from another derived class

class A{
....
};
class B : public A{
....
};
class C : public B{
...
};

Multipath Inheritance

a class derived from multiple derived class with same base class

class A{
...
};
class B : public A{
....
};
class C : public A {
...
};
class D : public C, public B, public A{

OOP x AI 20

....
};

Hierarchical Inheritance

If more than one class is inherited from the base class, it's known as
hierarchical inheritance.

class A{
...
};
class B:public A{
...
};
class C:public A{
...
};

class D:public B{
...
}
class E:public B{
....
}
class F:public C{
...
};
class G:public C{
....
}

Hybrid Inheritance

combination of two or more types inheritance

// combination of multilevel and hierarchy inheritance
class A{
...
}
class B {
...
};
class C : public A, public B{ // example of multi-level
....
};
class D :public A {
...
}
class E : public D {
...
};
class F : public D{

OOP x AI 21

....
};

Virtual Base Class Derived3 class called “Base” class for
two times to reduce this ambiguity we
will use virtual class. There are two path
two reach Base. If we use virtual base
class , it will choose one path
automatically. Otherwise, the compiler
will visit the both path.

it generates two copies

it will give a compiler error (assigning a variable, ..)

class base[
...
]
class deriverd1 : virtual public base{
...
}
class derived2 : virtual public base {
...
}
class derived3 : public deriver1, public derived2{
....
}

Advantages of Inheritance

Reduce code redundancy

Code reusability

Reduce source code

improves code readability

code is easy to manage

support code extensibility using overriding function

Disadvantages of Inheritance

OOP x AI 22

if you change in parent, that will affect in child classes

in hierarchy inheritance, many data members and functions are unused →
memory not utilized → affect in performance

In-Line Function
suggest the compiler to replace the function with the actual function definition at
the calling site

the compiler to substitute the code within the function definition for every instance
of a function call.

Advantages:

Performance Improvement: Faster because of eliminating the overhead of
function call

Code Size Reduction: reducing code size by avoiding repeated function call
instructions

Avoid Function Call Stack: do not require pushing and popping function call
stack

Disadvantages

Increased Code Size: If they are too large and called too often, program
grown larger

Limited Optimization Opportunities: In-lining a function call limit the
compiler’s ability to optimize the code

Compiler Decision: The compiler ultimately decides whether to inline a
function or not and the “inline” keyword is merely a suggestion

inline int cube(int x){
 return x*x*x;
}
int main(){
...
int a=5;
int ans = cube(a);
....
}

OOP x AI 23

A function convert to inline automatically (without inline keyword)

the function is defined in a class

the function’s definition is short enough

Create a class called dice that contains one private integer variable. Create a
function called roll() that uses the standard random number generator, rand(), to
generate a number between 1 and 6. Then have roll() display that value.

#include <cstdlib>
#include <iostream>
#include <time.h>
...

class dice(){
 int val;
 public:
 void roll(){
 srand(time(0));
 val = rand()%6 + 1;
 cout << roll << "\n";
 }
}

...

Friend Functions
a friend function is a function that is granted access to the private and protected
members of a class, even though it is not a member of that class

keyword :

it doesn’t have this pointer

Reasons :

operator overloading

creation of certain type of I/O functions

accessing private and protected member of a class without being member of
that class

class myClass{
...

friend

OOP x AI 24

int x; // x is a private data member
...
public :
...

friend int isEven(myclass ob);
..
};

int isEven(myclass ob){
 return (ob.x%2==0);
}

int main(){
...
myClass obj;
...
cout << isEven(obj) << "\n";
...
}

Moreover

a friend function can work with two or more different classes too

class truct;

class car{
int speed:
...
public:
friend int sp(car c, truct t);
...
};

class truct{
int speed;
public:
friend int sp(car c, truct t);
};

int sp(car c, truct t){
 ..
 return c.speed >= t.speed;
}
....

a friend function can be member of other class

class car;

class truct{
...
public:

OOP x AI 25

int friend_func(car c, truct t);
...
};

class car{
...
public:
friend int car::friend_func(car c, truct t);
};

int car::friend_func(car c, truct t){
.....
}

Operator Overloading
allows you to redefine the behavior of standard operation (+,-,*,/, ++ ..) for user-
defined data types

to overload operator, create an operator function

most often an operator function is a member function or friend of the class

Syntax:

class .. {
 return_type operator symbol (arguments){
 ...
 }
}

symbol : +,-,++, ...

Restrictions

Precedence of operator cannot be changed

Operator precedence determines the grouping of terms in an
expression and decides how an expression is evaluated

The number of operands that an operator takes cannot be altered

The statement "The number of operands that an operator takes cannot be
altered" means that you cannot change the number of operands
(arguments) that an operator works with when overloading it in C++. Each

OOP x AI 26

operator has a fixed number of operands it operates on, and this cannot be
modified during operator overloading.

For example:

The binary arithmetic operators (+, -, *, /) take two operands.

The unary arithmetic operators (+, -) take one operand.

The comparison operators (==, !=, <, >, <=, >=) take two operands.

The logical operators (&&, ||) take two operands and use short-circuit
evaluation.

The assignment operator (=) takes two operands, one on the left and one
on the right.

Operator function cannot have default arguments

Binary Operator Overloading

Binary Operator: Binary operators are operates in programming language
that operates on two operands or values

Example: + ⇒ a+b ⇒ it needs two operands a and b

When member function overloads a binary operator, the function will have
only one parameter → the right operand of operator

the left operand of operator → generates the call → passed implicitly by
this

class myClass{
 int x;
 public:
 ...
 // right side can be an object
 myClass operator+(myClass ob2){
 myClass temp;
 temp.x = x + ob2.x; // x = this->x
 return temp;
 }

 // right side can be an interger
 myClass operator+(int i){
 myClass temp;
 temp.x = x+i;
 return temp;
 }

// return integer, boolean,..
bool operator==(myClass ob2){
 return x==ob2.x;

OOP x AI 27

}
 ...
}
int main(){

myClass a, b, c;
...
c = a+b;
...
c = a+1;
/* c= 1+a => it will give compile-time error,
 friend function is needed to solve this */
}

Unary Operator Overloading

Unary Operator: operates on one operand only

Example: ++, - -

the operator function has no parameters

the operands ⇒ generates the call

//obj++;
class myClass{
 int x;
 public:
 ...
 myClass operator++(){
 x++;
 return *this;
 }
 ...
}

//++obj; notused value always be 0
...
myClass operator++(int notused){
 x++;
 return *this;
}
...

Friend Operator Function

Friend Function: a friend function is a function that is granted access to the
private and protected members of a class, even though it is not a member of
that class.

OOP x AI 28

a friend function dose not have a this pointer

a friend operator function is passed two(for binary) / one(for unary)
operands explicitly (reason : there’s no this pointer)

class myClass{
 int x;
 public:
 ..
 friend myClass operator+(myClass o1, myClass 02); // c=a+b
 friend myClass operator+(int i, myClass o1); // c = 1 + a
 friend myClass operator+(myClass o1, int i); // c=a+1
 friend myClass operator--(myClass o1); // a--
 ..
};
// c=a+b
myClass operator+(myClass o1, myClass o2){
 myClass temp;
 temp.x = o1.x + o1.x;
 return temp;
}
//c=1+a
myClass operator+(int i, myClass o1){
 myClass temp;
 temp.x = i + o1.x;
 return temp;
}
//c=a+1
myClass operator+(myClass o1, int i){
 myClass temp;
 temp.x = i + o1.x;
 return temp;
}
//a--
myClass operator--(myClass o1){
 o1.x--;
 return o1;
}

Exception Handling
a mechanism that allows to manage and respond to unexpected or exceptional
situation that may occur during the executing time

handling run-time error

Types

Checked : Also called compile-time exceptions, the compiler checks these
exceptions during the compilation process to confirm if the exception is

https://www.techtarget.com/whatis/definition/compiler

OOP x AI 29

being handled by the programmer. If not, then a compilation error displays
on the system.

Unchecked: Also called runtime exceptions, these exceptions occur
during program execution. These exceptions are not checked at compile
time, so the programmer is responsible for handling these exceptions.
Unchecked exceptions do not give compilation errors

#include <iostream>
using namespace std;

int divide(int a, int b) {
 if (b == 0) {
 throw "Division by zero is not allowed.";
 //throw 123;
 //throw 5.001
 }
 return a / b;
}

int main() {
 try {
 int result = divide(10, 0);
 cout << "Result: " << result << endl;
 } catch (const char *ex) {
 cerr << "Exception caught: " << ex << endl;
 cout << "Exception caught: " << ex << endl;
 }
 catch (const int a){
 cerr << "Exception caught: " << a << endl;
 cout << "Exception caught: " << a << endl;
 }
 catch (...){
 cerr << "Exception caught: Error " << endl;
 cout << "Exception caught: Error " << endl;
 }

 return 0;
}

Virtual Function
A virtual function is a member function in the base class that we expect to
redefine in derived classes.

the most derived version of a class will be executed using a base class pointer

OOP x AI 30

#include <bits/stdc++.h>
using namespace std;

class A{
 public:
 virtual void func(){
 cout << "A";
 }
};

class B:public A{
 public:
 void func(){
 cout << "B";
 }
};
int main() {
 A *p = new B();
 p->func();
}

Pure Virtual Function

use the derived class function not base

every derived class must have the virtual function

Abstract class: which have at least one pure virtual function

class A{
...
virtual void func() = 0;
..
}

OOP Characteristics
Encapsulation

Wrapping of data and function together in a single unit known as
Encapsulation

by default data are not accessible to outside of the class and they are
accessible by member function which are wrapped in a class

prevention of data access by program → data hiding or information hiding

Data abstraction

OOP x AI 31

Abstraction refers to the act of representing essential features without including
the back ground details or explanation. Class use the concept of data
abstraction so they are called abstracted data type(ADT).

an abstract class must have at least one virtual function

class smartphone{
 ...
 public:
 virtual void camera() = 0;
 virtual void makeACall() = 0;
....
};

class iphone : public smartphone {
...
public:
void camera(){
...
//details or explanation
...
}
void makeACall(){
...
// details and explanation
...
}
};

class android : public smartphone{
...
public:
void camera(){
...
// details and explanation
...
}
void makeACall(){
...
// details and explanation
...
}
};

int main(){
 smartphone *a1 = new android();
 a1->camera();
 smartphone *a2 = new iphone();
 a2->makeACall();
/*
 The other developers just need to know that there's a function
named camera(), makeACall() ... So, we can hide the
implementation code of this.. the implementation code for each
child class may differ, but it's not a matter of consideration to
the other developers.

OOP x AI 32

*/
}

Polymorphism

Greek “Poly” (many) and “morphism” (forms) ⇒ many forms

it means the ability to take more than one form

Ways to achieve

Function overloading

Operator overloading

Function overriding

Inheritance

Stated before

Function Overriding
Function overriding in C++ is a concept by which you can define a function of the
same name and the same function signature (parameters and their data types) in
both the base class and derived class with a different function definition.

It usually execute the derived class function then

class base {
...
public:
void func(){
 cout << "Base";
}
...
};

class derived : public base{
...
public:
void func() override{
 cout << "derived";
}
};

int main(){

OOP x AI 33

 derived ob;
 ob.func(); // Output : Derived
}

// if we have to show the base class
class base {
...
public:
void func(){
 cout << "Base";
}
...
};

class derived : public base{
...
public:
void func() override{
 cout << "derived";
 // way 01:
 base::func();
}
};

int main(){
 derived ob;
 // Way : 02
 ob.Base::func(); // Output : Base
 // way : 03
 base ptr = new derived();
 ptr->func(); // Output : Base
}

But there may be situations when a programmer makes a mistake while overriding
that function. So, to keep track of such an error, C++11 has come up with
the override identifier.

class base{
 ..
 public:
 void func(){

 }
};

class derived{
 ...
 public:
 void func(int a) override{

 }
};

OOP x AI 34

int main(){
 derived a;
 a.func();
}
/*
Observation:
func() and func(int a) are not overriding, but overloading... by using "override" keyword,
it shows an error, because the function isn't overriding..
to stop making this mistake, override keyword is used.
*/

Friend Class
Friend Class is a class that can access both private and protected variables of the
class in which it is declared as a friend, just like a friend function.

class One{
.....
friend class Two;
};
class Two{
........
};

Question and Answers
Different between OOP and SPL

Aspect
Object-Oriented Programming
(OOP)

Procedural/Structured Programming

Paradigm
Based on the concept of objects
and classes.

Based on procedures and functions.

Data and
Behavior

Encapsulates data and behavior
(methods/functions) together in
classes.

Separates data and behavior
(functions) into different entities.

Modularity
Emphasizes on creating reusable
and modular code using classes
and objects.

Relies on functions and procedures for
code modularity.

OOP x AI 35

Aspect
Object-Oriented Programming
(OOP)

Procedural/Structured Programming

Abstraction
Supports data abstraction using
access control (public, private,
protected).

Limited or no direct support for data
abstraction.

Inheritance
Supports inheritance, allowing one
class to derive properties from
another.

Typically does not support inheritance.

Polymorphism
Supports polymorphism, enabling
one interface (function) to work with
different data types.

Limited or no support for
polymorphism.

Encapsulation
Encapsulation is a fundamental
principle, where data and methods
are bundled together within a class.

Encapsulation is not emphasized, and
data may be freely accessed by
different parts of the program.

Examples C++, Java, Python, etc. C, Pascal, Fortran, etc.

It generally follows “Bottom-Up
Approach”.

It generally follows “Top-Down
Approach”.

It gives more importance to data. It gives more importance of code.

Here are some reasons why you might choose OOP for a complex project:

Modularity and Reusability: OOP encourages breaking down complex
problems into smaller, manageable modules (classes).

Encapsulation: OOP promotes data encapsulation, hiding the implementation
details of classes and providing well-defined interfaces for interacting with
objects

Abstraction: OOP allows you to abstract the essential characteristics of an
object, focusing on what it does rather than how it does it. This level of
abstraction simplifies understanding and makes it easier to manage complex
systems.

Inheritance: OOP supports inheritance, which allows you to create new
classes based on existing ones, inheriting their attributes and behaviors.

Polymorphism: OOP provides polymorphism, enabling you to use a single
interface to represent different types of objects. This promotes flexibility and
extensibility, making it easier to add new features or variations without
modifying existing code.

Encourages Design Patterns: OOP aligns well with the use of design
patterns, which are common solutions to recurring design problems.

OOP x AI 36

Team Collaboration: OOP can promote better collaboration among team
members. By dividing the project into classes and objects, different team
members can work on different modules independently, leading to more
parallel development and efficient teamwork.

Code Maintainability: OOP's modular and organized nature results in code
that is easier to maintain and update

Code Extensibility: OOP makes it easier to extend functionality without
modifying existing code.

Readability and Understandability: The structure and syntax of OOP are
often more intuitive and natural, making the codebase easier to understand,
especially when dealing with large and complex projects.

cin and cout are function ? if not, then what are they ? how they works?

cin and cout are not functions; they are objects of the C++ Standard Library's
istream and ostream classes, respectively. These objects are used for input
and output operations in C++.

Here's how they work:

1. cin (input stream object):

cin is an object of the istream class, which is used for reading data
from the standard input (usually the keyboard) into C++ variables.

It provides various extraction operators (>>) that allow you to read
different types of data (e.g., integers, floating-point numbers,
characters, strings) from the input stream.

Example of reading an integer from the user:

int num;
std::cout << "Enter an integer: ";
std::cin >> num; // User inputs an integer, and it is stored in 'num'

2. cout (output stream object):

cout is an object of the ostream class, which is used for displaying
data to the standard output (usually the console or terminal).

It provides various insertion operators (<<) that allow you to output
different types of data to the output stream.

Example of printing a message to the console:

OOP x AI 37

std::cout << "Hello, World!";

Both cin and cout are part of the C++ Standard Library's iostream header,
which provides facilities for input and output operations. They work with
overloaded operators (>> for input and << for output) to handle different
data types and provide a convenient and concise way of interacting with the
standard input and output streams.

When you use cin to read input, the program waits for the user to enter data
and press the Enter key. The data is then read from the input stream, and the
appropriate variables are populated with the entered values.

Similarly, when you use cout to output data, the data is sent to the output
stream, and it appears on the console or terminal for the user to see.

Overall, cin and cout are essential tools for interacting with the user and
providing informative output in C++ programs.

what are the roles of constructor and destructor in a class?

Constructor:

A constructor is a special member function with the same name as the class. It
is automatically called when an object of the class is created.

The primary purpose of a constructor is to initialize the object's data members
and set up its initial state.

Constructors are responsible for allocating resources, setting default values,
and performing any necessary setup operations.

Constructors can be overloaded, meaning a class can have multiple
constructors with different parameter lists, allowing different ways to create
objects.

Destructor:

A destructor is a special member function with the same name as the class,
preceded by a tilde ~ . It is automatically called when an object is about to be
destroyed (e.g., when it goes out of scope or explicitly deleted).

The primary purpose of a destructor is to release resources, perform
cleanup, and deallocate memory that was allocated during the object's
lifetime.

OOP x AI 38

Destructors are useful for managing dynamic memory, releasing file handles,
closing network connections, or performing any cleanup tasks that the object
requires before being removed from memory.

Unlike constructors, destructors cannot be overloaded. There can only be
one destructor for a class.

Define the scope resolution operator?

The scope resolution operator in C++ is denoted by :: and is used to access
entities (variables, functions, classes, etc.) defined in different scopes. It
allows you to explicitly specify the scope of the entity you want to access,
overriding the default scope resolution.

How do new and delete differ from malloc and free in c++ ?

new and delete operators in C++ and malloc() and free() functions in C are
used for dynamic memory allocation and deallocation, but they have some key
differences:

1. Type Safety:

new and delete : In C++, new and delete are type-safe. They
automatically determine the size and type of the allocated memory based
on the data type of the variable being allocated. The correct constructors
and destructors are also called when using new and delete for objects,
ensuring proper initialization and cleanup.

malloc() and free() : In C, malloc() and free() are not type-safe. They
operate on void* , and you need to manually cast the returned pointer to
the appropriate type. You also need to call the constructors and
destructors explicitly for objects if needed.

2. Constructor and Destructor Calls:

new and delete : They automatically call the constructor of the allocated
object (if it's a class) during memory allocation and the destructor during
deallocation. This ensures proper object initialization and cleanup.

malloc() and free() : They do not call constructors or destructors, making
them suitable for raw memory allocation and deallocation without any
additional initialization or cleanup.

3. Size Calculation:

OOP x AI 39

new and delete : They automatically calculate the size of the allocated
memory based on the data type specified, so you don't need to explicitly
mention the size during allocation or deallocation.

malloc() and free() : You must explicitly specify the size in bytes when
using malloc() and pass the same size to free() during deallocation.

4. Exception Handling:

new : If memory allocation fails, it throws a std::bad_alloc exception, which
can be caught and handled.

malloc() : If memory allocation fails, it returns a NULL pointer, and you need
to check for this explicitly to handle memory allocation failures.

5. Array Allocation:

new[] and delete[] : In C++, you can allocate and deallocate arrays using
new[] and delete[] . These operators keep track of the number of
elements in the array for proper deallocation.

malloc() and free() : In C, malloc() can be used to allocate arrays, but it
doesn't keep track of the number of elements. You need to manually store
and manage the size of the allocated array.

List of types inheritance supported by C++.

In C++, there are four types of inheritance supported:

1. Single Inheritance:

In single inheritance, a derived class inherits from only one base class.

It is the most common type of inheritance and represents a simple "is-a"
relationship between classes.

class Base {
 // Base class members
};

class Derived : public Base {
 // Derived class members
};

2. Multiple Inheritance:

OOP x AI 40

In multiple inheritance, a derived class can inherit from multiple base
classes.

It allows a class to combine features from multiple sources and is
represented by a diamond-shaped inheritance diagram.

class Base1 {
 // Base class 1 members
};

class Base2 {
 // Base class 2 members
};

class Derived : public Base1, public Base2 {
 // Derived class members
};

3. Multilevel Inheritance:

In multilevel inheritance, a derived class inherits from another class, which
itself may be derived from another class.

It forms a chain of inheritance relationships.

class Grandparent {
 // Grandparent class members
};

class Parent : public Grandparent {
 // Parent class members
};

class Child : public Parent {
 // Child class members
};

4. Hierarchical Inheritance:

In hierarchical inheritance, multiple derived classes inherit from a single
base class.

It represents an "is-a" relationship, where different classes share common
characteristics defined in the base class.

class Animal {
 // Base class members
};

OOP x AI 41

class Dog : public Animal {
 // Dog class members
};

class Cat : public Animal {
 // Cat class members
};

Hybrid Inheritance

What do you mean by generic programming? Write a program which will
find
out the maximum from two numbers using template function.

Generic programming is a programming paradigm that aims to create reusable and
flexible code by using templates or generics. In generic programming, algorithms and
data structures are written in a way that they can work with different data types without
having to rewrite the code for each specific type.

#include <iostream>

// Template function to find the maximum of two values
template <typename T>
T findMax(T a, T b) {
 return (a > b) ? a : b;
}

int main() {
 int intNum1 = 42, intNum2 = 73;
 double doubleNum1 = 3.14, doubleNum2 = 2.71;

 // Find the maximum of two integers
 int maxInt = findMax<int>(intNum1, intNum2);
 std::cout << "Maximum of " << intNum1 << " and " << intNum2 << " is " << maxInt << s
td::endl;

 // Find the maximum of two double values
 double maxDouble = findMax<double>(doubleNum1, doubleNum2);
 std::cout << "Maximum of " << doubleNum1 << " and " << doubleNum2 << " is " << maxDo
uble << std::endl;

 return 0;
}

