
Numerical Analysis 1

Numerical Analysis
Created

Last Edited Time

By Borhan

Email

References:

TheOrganicChemistryTutor

Dr. Gajendra Purohit

https://www.youtube.com/playlist?
list=PLVKIC9j3jSYsm8GELqAMFJ_1ebbMpK-9U

Error
 Modelling Errors These errors arise during the modelling process when
scientists ignore effecting factors in the model to simplify the problem. Also,
these errors known as formulation errors.

 Data Uncertainty These errors are due to the uncertainty of the physical
problem data and also known as data errors.

 Discretization Errors Computers represent a function of continuous variable by a
number of discrete values. Also, scientists approximated replace complex
continuous problems by discrete ones and this results in discretization errors.

@October 12, 2022 7:19 PM

@January 14, 2023 5:31 PM

https://www.youtube.com/playlist?list=PLVKIC9j3jSYsm8GELqAMFJ_1ebbMpK-9U

Numerical Analysis 2

Absolute error is the difference between measured or inferred value and the actual
value of a quantity.

The relative error is defined as the ratio of the absolute error of the measurement to
the actual measurement.

Rounding error or Roundoff error's the difference between a rounded-off
numerical value and the actual value

Computers represent numbers in finite number of digits and hence some quantities
cannot be represented exactly. The error caused by replacing a number a by its
closest machine number is called the roundoff error and the process is called
correct rounding.

Example:

 (actual)

But, you got

A truncation error is the difference between an actual and a truncated, or cut-
off, value

x = 22/7

x = 3.14

Numerical Analysis 3

Truncation errors also sometimes called chopping errors are occurred when
chopping an infinite number and replaced it by a finite number or by truncated a
series after finite number of terms.

Example :

→ (actual)

But yout got

Bisection Method
AKA Bolzano method.

Steps:

Set based on

Find intermediate point

Shift based on two condition

NB: means that, you have to choose and such a way that
they would return the value of the same or different but must be
opposite in sign.

Code for Bisection method:

#include <stdio.h>
#include <math.h>
#define f(x) (x * x * x - 2 * x - 5)

int main()
{
 double a = 0, b = 0;

x = =2 1.14......

x = 1.143

x ,x1 2 f(x) ∗1 f(x) <2 0

x =
2

x + x1 2

x ,x1 2

f(x) ∗ f(x) <1 0

x =2 x

f(x) ∗ f(x) >1 0

x =1 x

f(x) ∗1 f(x) <2 0 x1 x2
f(x),f(x)1 2

Numerical Analysis 4

 double x1 = 0, x2 = 0;

 // Step 1 : finding the value of x1 and x2
 while (1)
 {
 /*
 ekhane dui bhabe check kortechi,
 dhoren,
 1) (0 1), (1,2) , ...
 2) (0,-1), (-1,-2),
 ig, yk why.
 */
 if (f(a) * f((a - (double)1.0000)) < 0)
 {
 printf("%lf %lf", f(a), f((a - (double)1.0000)));
 x1 = a;
 x2 = a - 1;

 break;
 }
 if (f(b) * f((b + (double)1.0000)) < 0)
 {
 x1 = b;
 x2 = b + 1;
 break;
 }
 a--;
 b++;
 }
 // Step 2 & 3 : finding the root

 // we'll just jot down the steps which are written on the blog
 double x; // the intermediate poing
 double ans; // we're gonna store our answer here
 while (1)
 {
 x = (x1 + x2) / 2; // the second step
 // the third step
 if (f(x1) * f(x) < 0)
 x2 = x;
 if (f(x2) * f(x) < 0)
 x1 = x;
 // break the loop(idea from class)
 if (fabs((x1) - (x2)) <= 0.001)
 {
 ans = x;
 break;
 }
 }

 printf("%lf", ans);
 return 0;
}

Numerical Analysis 5

Regula–Falsi Method
1) Set based on

2) Find intermediate point

3) Shift based on two condition

4) Compare the previous and current answer, and repeat until you don’t get the
desired result.

NB: means that, you have to choose and such a way that
they would return the value of the same or different but must be
opposite in sign. (It is not going to be repeated again.)

Derivation:

 Slope of Slope of

⇒

x ,x1 2 f(x) ∗1 f(x) <2 0

x =
f(x) − f(x)2 1

x f(x) − x f(x)1 2 2 1

x ,x1 2

f(x) ∗ f(x) <1 0

x =2 x

f(x) ∗ f(x) >1 0

x =1 x

f(x) ∗1 f(x) <2 0 x1 x2
f(x),f(x)1 2

AB = CB

x −x1 2

f (x)−f (x)1 2 =
x−x2
0−f (x)2

Numerical Analysis 6

⇒

Note :

(x, y) = (x, 0) ⇒ y=0, check the graph again.

Slope

Code for implementing Regula–Falsi Method:

#include <stdio.h>
#include <math.h>
#define f(x) (x * x * x - 2 * x - 5)

int main()
{
 double a = 0, b = 0;
 double x1 = 0, x2 = 0;

 // Step 1 : finding the value of x1 and x2
 while (1)
 {
 /*
 ekhane dui bhabe check kortechi,
 dhoren,
 1) (0 1), (1,2) , ...
 2) (0,-1), (-1,-2),
 ig, yk why.
 */
 if (f(a) * f((a - (double)1.0000)) < 0)
 {
 printf("%lf %lf", f(a), f((a - (double)1.0000)));
 x1 = a;
 x2 = a - 1;

 break;
 }
 if (f(b) * f((b + (double)1.0000)) < 0)
 {
 x1 = b;
 x2 = b + 1;
 break;
 }
 a--;
 b++;
 }
 // Step 2 & 3 : finding the root

 // we'll just jot down the steps which are written on the blog
 double ans = a; // we're gonna store our answer here
 while (1)
 {
 double prevAns = ans;
 double x = ((x1 * f(x2) - x2 * f(x1)) /
 (f(x2) - f(x1)));

x =
f (x)−fx2 1

x f (x)−x f (x)1 2 2 1

=
x −x1 2

y −y1 2

Numerical Analysis 7

 ans = x;
 if (f(x) * f(x1) < 0)
 {
 x2 = x;
 }
 else
 x1 = x;
 // Calculating the the literation of last two answer
 if (fabs((prevAns) - (ans)) <= 0.001)
 {
 break;
 }
 }

 // Printing the answer
 printf("%lf", ans);
 return 0;
}

Newton Raphson Method

 must be continuous and differentiable too.

It is the fastest method.

Find and

Intermediate Point: (Use one of them)

Using middle point

Checking the function value(recommended)

 ⇒ ;

 ⇒ ;

Any point

f(x)

x1 x2

x =
2

x + x1 2

∣f(x)∣ <1 ∣f(x)∣2 x = x1

∣f(x)∣ >1 ∣f(x)∣2 x = x2

x ϵ (x ,x)1 2

Numerical Analysis 8

Find roots : x1,….

Repeat until the answer…..

Derivation:

Equation of tangent ⇒

⇒

⇒

The tangent line to y = f(x) at the point (a, f(a)) has equation
y = f(a)+(x − a)f’(a).

 Code for Newton Raphson Method:

#include <stdio.h>
#include <math.h>
#define f(x) (x * x * x - 2 * x - 5)

x = x −n+1 n f (x)′
n

f (x)n

y− y =0 f (x)(x−′
0 x)0

0 − f(x) = f (x)(x− x)0
′

0 0

x = x −0 f (x)′
0

f (x)0

Numerical Analysis 9

#define diff(x) (3 * x * x - 2)
int main()
{
 double a = 0, b = 0;
 double x1 = 0, x2 = 0;

 // Step 1 : finding the value of x1 and x2
 while (1)
 {
 /*
 ekhane dui bhabe check kortechi,
 dhoren,
 1) (0 1), (1,2) , ...
 2) (0,-1), (-1,-2),
 ig, yk why.
 */
 if (f(a) * f((a - (double)1.0000)) < 0)
 {
 printf("%lf %lf", f(a), f((a - (double)1.0000)));
 x1 = a;
 x2 = a - 1;

 break;
 }
 if (f(b) * f((b + (double)1.0000)) < 0)
 {
 x1 = b;
 x2 = b + 1;
 break;
 }
 a--;
 b++;
 }

 // MAIN CODE
 double x0;
 double ans;
 if (fabs(f(x1)) < fabs(f(x2)))
 x0 = x1;
 else
 x0 = x2;

 while (1)
 {
 double x = x0 - (f(x0) / diff(x0));
 if (fabs(x - x0) <= 0.001)
 {
 ans = x;
 break;
 }
 x0 = x;
 }
 printf("%lf", ans);
 return 0;
}

Numerical Analysis 10

Secant Method
Same as Regula-Falsi method.

Steps:

1) Find and

2) Find intermediate point

3) Shift such as below

4) Compare the previous and current answer, and repeat if you don’t get the
desired result.

x1 x2

x =
f(x) − f(x)2 1

x f(x) − x f(x)1 2 2 1

x ,x1 2

x =1 x2

x =2 x

Numerical Analysis 11

Code:

#include <stdio.h>
#include <math.h>
#define f(x) (x * x * x - 2 * x - 5)

int main()
{
 double a = 0, b = 0;
 double x1 = 0, x2 = 0;

 // Step 1 : finding the value of x1 and x2
 while (1)
 {
 /*
 ekhane dui bhabe check kortechi,
 dhoren,
 1) (0 1), (1,2) , ...
 2) (0,-1), (-1,-2),
 ig, yk why.
 */
 if (f(a) * f((a - (double)1.0000)) < 0)
 {
 printf("%lf %lf", f(a), f((a - (double)1.0000)));
 x1 = a;
 x2 = a - 1;

 break;
 }
 if (f(b) * f((b + (double)1.0000)) < 0)
 {
 x1 = b;
 x2 = b + 1;
 break;
 }
 a--;
 b++;
 }
 // Step 2 & 3 : finding the root

 // we'll just jot down the steps which are written on the blog
 double ans = 1e9; // Just assume a number which can never be the answer
 while (1)
 {
 double prevAns = ans;
 double x = ((x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)));
 ans = x;
 x1 = x2;
 x2 = x;
 // Calculating the the literation of last two answer
 if (fabs((prevAns) - (ans)) <= 0.001)
 {
 break;
 }

Numerical Analysis 12

 }

 // Printing the answer
 printf("%lf", ans);
 return 0;
}

Iteration Method
Find and

Find and

Find

phi(x) phi (x)′

x1 x2

x0

+

Numerical Analysis 13

NOT POSSIBLE

Repeat

Code:

#include <stdio.h>
#include <math.h>

#define f(x) (x * x * x + x * x - 1)
#define phi(x) 1 / sqrt(1 + x)
#define diffPhi(x) (0.5 / sqrt(1 + x))

/*
y = x^3 - 2x - 5, is unsolvable by Iteration method.
idky.

#define f(x) (x * x * x - 2* x - 5)
#define phi(x) 5/(x*x - 2)
#define diffPhi(x)(10*x/((x*x - 2)*(x*x - 2)))

*/
int main()
{
 double a = 0, b = 0;
 double x1 = 0, x2 = 0;

 // Step 1 : finding the value of x1 and x2
 while (1)
 {
 /*
 ekhane dui bhabe check kortechi,
 dhoren,
 1) (0 1), (1,2) , ...
 2) (0,-1), (-1,-2),
 ig, yk why.
 */
 if (f(a) * f((a - (double)1.0000)) < 0)
 {
 printf("%lf %lf", f(a), f((a - (double)1.0000)));
 x1 = a;
 x2 = a - 1;

 break;
 }
 if (f(b) * f((b + (double)1.0000)) < 0)

x =0 2
x + x1 2

phi (x) <′
0 1 :

x = phi(x)n n

phi (x) >=′
0 1 :

Numerical Analysis 14

 {
 x1 = b;
 x2 = b + 1;
 break;
 }
 a--;
 b++;
 }
 // Step 2 & 3 : finding the root
 // we'll just jot down the steps which are written on the blog
 double ans = 1e9; // Just assume a number which can never be the answer
 double x0 = (x1 + x2) / 2;

 if (abs(diffPhi(x0)) < 1)
 {
 while (1)
 {
 double xn = phi(x0);
 if (fabs(xn - x0) <= 0.001)
 {
 ans = xn;
 break;
 }
 x0 = xn;
 }
 }
 else
 {
 printf("NOT FOUND");
 return 0;
 }

 // Printing the answer
 printf("%lf", ans);
 return 0;
}

Interpolation

When interpolation?

We know the value of x and y of a function but don’t know the function
(like y=f(x)=x^2 + 5)

Numerical Analysis 15

Equal Intervals:
x = 3 5 7 9 11

y= 2 6 8 12 13

The difference between and is equal. 2 for this example.

if,

x= 3.5 (at starting) → we will use Newton Forward Interpolation

x= 5.1 - 7.9 → we will use Central Difference Interpolation

x=9.5 (at end) → we will use Newton Backward Interpolation

Newton Forward Interpolation (for Equal Intervals):

Procedure:

Create a difference table

Use the formula and calculate

h = difference b/w two contiguous x

f(a), f^2(a), …. → upper value (1st row)

xi xi+1

Numerical Analysis 16

Newton Backward Interpolation (For Equal Interval):

Procedure :

Create a difference table

Use the formula an calculate

f(a), f^2(a), … → the lower value (the last value of every
column)

Numerical Analysis 17

For Unequal Intervals
Difference between x(i) and x(i+1) is not equal for all.

Numerical Analysis 18

Lagrange’s Interpolation Method:

Procedure :

Evaluate the formula and put the value of x0, x1, … and f(x)…

x = the value given in question

Newton Divided Difference:

Numerical Analysis 19

Shift Operator (E)

 [forward difference operator]

 [backward difference operator]

Relation between forward/backward difference operator to Shift
Operator

Ef(x) = f(x+ h)

E f(x) =n f(x+ nh)

E f(x) =−1 f(x− h)

E f(x) =−n f(x− nh)

△f(x) = f(x+ h) − f(x)

▽f(x) = f(x) − f(x− h)

Prove,E = 1 +△
△f(x) = f(x+ h) − f(x)
or,△f(x) = Ef(x) − f(x)

Hence,△ = E − 1

1

Numerical Analysis 20

Solution of Linear Algebraic Method
Directed Method

Indirect Method

Gauss Elimination Method:
Procedure:

Gauss-Jordan Method:

Procedure:

Convert the matrix to diagonal matrix

Prove,▽ = 1 −E−1

▽f(x) = f(x) − f(x− h)
or,△f(x) = f(x) −E f(x)−1

or,▽ = 1 −E−1

Numerical Analysis 21

Numerical Integration

n = stripe, (generally, it’s 6)

Trapezoidal Rule

Applicable for any no. interval.

Simpson one-third rule

Applicable for only even intervals.

Simpson three-by-eight rule

Applicable for only multiple of 3 intervals.

h = n
b−a

f(x)dx =∫
a

b
h(+2

y +y0 n y +1 y)n

f(x)dx =∫
a

b (y + y +3
h

0 n 4(y +1 y +3 ...) + 2(y +2 y +4 ...))

f(x)dx =∫
a

b (y +8
3h

0 y +n 3(y +2 y ...) +4 2(y +1 y +3 y +6 ...))

Numerical Analysis 22

LU Decomposition:

AKA Factorization Method, Cholesky's Method

Jacobi Method:

Numerical Analysis 23

