

Question Analysis

 Created 	@January 10, 2023 9:34 PM
 Last Edited Time 	@January 14, 2023 10:42 PM
≣ By	Sagor <ash2101008m></ash2101008m>

Numerical Analysis:

Newton forward Interpolation(proof + math)*****

forward difference operator*

construct forward difference table**

Lagrange interpolation ****

Newton divided formula *

Euler (math + description+derivation)***

Modified Euler (how it improves accuracy)* Taylor ** (skipped) Range CUTE AAAA** absolute error+relative error**, overflow and underflow* find percentage of error math* chopping, general equation of chopping* find absolute and relative error* Numerical Differentiation * (skipped) simson 1/3 **** trapezoidal rule(def^n + math)*** Bisection (description, explanation, proof) *** Newton raphson (math + equation)**** trancendental equation and characteristics (*) Gauss method (describe)* LU decomposition ** Curve(math + diff)** numerical integration (proof+defn)* * (skipped) find first and second derivative *** iretative method* gauss seidel method* gauss-jordan* taxonomoy of error* shifting operator basic

Errors:

Error, in applied mathematics, the difference between a true value and an estimate, or approximation, of that value

.

Taxonomy of error:

*truncation

Absolute Error

Absolute error is the difference between measured and the actual value of a quantity.

Keyword: measured value - actual value

If x is the actual value of a quantity and x0 is the measured value of the quantity, then the absolute error value can be calculated using the formula

 $\Delta x = |x0-x|.$

Here, Δx is called an absolute error.

For example, 24.13 is the actual value of a quantity and 25.09 is the measure or inferred value, then the absolute error will be:

```
Absolute Error = |25.09 – 24.13|
= 0.86
```

Relative Error

The relative error is defined as the ratio of the absolute error of the measurement to the actual measurement.

Keyword: absolute error/actual error

If x is the actual value of a quantity, x0 is the measured value of the quantity and Δx is the absolute error, then the relative error can be measured using the below formula.

Relative error = $(x0-x)/x = (\Delta x)/x$

Rounding Error

Rounding error is the difference between a rounded-off numerical value and the actual value.

As an example of rounding error, consider the <u>speed of light</u> in a vacuum. The official value is 299,792,458 meters per second. In <u>scientific (power-of-10)</u> <u>notation</u>, that quantity is expressed as 2.99792458 x 108. Rounding it to three decimal places yields 2.998 x 108. The rounding error is the difference between the actual value and the rounded value, in this case (2.998 - 2.99792458) x 108, which works out to 0.00007542 x 108

. Expressed in the correct scientific notation format, that value is 7.542×103 .

Rounding error = |rounded-off numerical value - actual value|

Percentage of Error

To see how the calculation works, let's look at a quick example.

While measuring the layout for a pool, a landscaper accidentally records 8m. What is the percentage error if the actual length is 10m?

To solve for this, we'll use the formula:

Percentage Error = ((Estimated Number – Actual Number)/ Actual number) x 100

- Where the Actual Value = 10m
- And the estimated value = 8m.

Step 1. Subtract the actual value from the estimated value.

8m – 10m = -2m

Step 2. Divide the results with the actual value

-2m/10m = -0.2

Step 3. To find the percentage error, multiply the results by 100 $-0.2 \times 100 = -20\%$

The percentage error in the measurement was -20%

Percentage Error = $8 - 10/10 \times 100 = -2/10 \times 100 = -20\%$.

(Take absolute value)

Summary:

- Absolute Error = |Experimental Measurement Actual Measurement|
- Relative Error= Absolute Error/Actual Measurement
- Percentage Error = Decimal Form of Relative Error x 100.

Truncation error

A truncation error is the difference between an actual and a <u>truncated</u>, or cut-off, value.

A truncated quantity is represented by a numeral with a fixed number of allowed digits, with any excess digits chopped off -- hence, the expression *truncated*

Example:

Consider the <u>speed of light</u> in a vacuum. The official value is 299,792,458 meters per second (m/s). In <u>scientific (power-of-10) notation</u>, it is expressed as 2.99792458 x 108 m/s. But truncating it to only two decimal places yields 2.99 x 108 m/s.

Since the truncation error is the difference between the actual value and the truncated value, in this case, it comes to the following:

2.99792458 x 108 - 2.99 x 108 = 0.00792458 x 108 m/s

Chopping Error:

- a type of round-off error
- truncated or chopping the last digit or last k digit of a rounding value

(IT"S NOT A TURNCATION ERROR)

Transcendental Functions

The transcendental function can be defined as a function that is **not algebraic** and **cannot be expressed in terms of a finite sequence** of algebraic operations such as sin x.

Keyword: function which output is an infinite sequence

Transcendental equation

A transcendental equation is an equation **into which transcendental functions** (such as *exponential, logarithmic, trigonometric, or inverse trigonometric*) of one of the variables (s) have been solved for.

A transcendental equation is an <u>equation</u> over the <u>real</u> (or <u>complex</u>) numbers that is not <u>algebraic</u>, that is, if at least one of its sides describes a <u>transcendental function</u>. [<u>1</u>]

Keyword: the equation which contains transcendental function

Characteristics (NOT SURE)

- non-algebraic
- infinite
- contains transcendental functions

(learn more : https://www.britannica.com/science/transcendental-function)

(If you are more interested about Errors, learn from : <u>https://graphics.stanford.edu/courses/cs205a-13-fall/assets/notes/chapter1.pdf</u> . Anyways, I haven't read the PDF yet. All of them are collected from different articles.)

Bisection Method

The bisection method is an approximation method to find the roots of the given equation by **repeatedly dividing the interval**. This method will divide the interval until the resulting interval is found, which is extremely small.

More:

- used to find the roots of a polynomial equation
- · based on intermediate theorem on continuous function
- work by narrowing the gap between positive and negative interval until closes in on the correct answer

Theory & Proof: (From Rupa)

Harriens if
$$f(x)$$
 be continuous of in $a \pm x \pm B$
and $i + f(a)$ and $-f(b)$ are opposite signs;
then there exists at least one most of
 $f(x)=0$, say x_0 , $f(x_0)=0$, $a < x_0 < B$.
Proof: Let $f(a)$ be negetive and $f(b)$ be
positive in the interval $[a, B]$. Then at deast
one most of the equation $f(x)$ lies in $[a, B]$.
The most be $x_0 = \frac{1}{2}(a+B)$, which is obtained
by deviding the distance between the points
 $A(A_{20}) & B(b, 0)$ into equal parts. It's given
if $f(x_0)=0$, then x_0 is the most of the given
 $f(x_0)$ is positive on negative.
 $f(x_0)$ is positive on negative.
 $b = \frac{1}{2}(a+2_0)$

Iterative Method

$$\begin{array}{l} & \frac{1}{\sqrt{n^{n}}} \frac{1}{\sqrt{n^{n$$

 $\begin{aligned} \chi_{5} &= \varphi(\chi_{4}) = 0.75176 \\ \chi_{6} &= \varphi(\chi_{5}) = 0.75187 \\ \chi_{7} &= \varphi(\chi_{6}) = 0.75187 \\ \chi_{7} &= \varphi(\chi_{6}) = 0.75188 \\ \chi_{8} &= \varphi(\chi_{6}) = 0.75188 \\ \chi_{8} &= \varphi(\chi_{7}) = 0.75188 \\ \chi_{9} &= 0.75188 \\$ · · · the required too f is = 0.75488 (18) = 2" $x_2 = q(x_2)$

Newton Rapson Method

Theory & Proof : (from Rupa)

$$\frac{y \operatorname{Newley Paper Paper Protocol}}{p}$$

$$\frac{y \operatorname{Newley Paper Pape$$

$$\begin{split} & \text{We} \quad -\int ind \quad Rapson \; nachod \; , \\ & \text{X}_{n+1} = \text{X}_{n} - \frac{1}{7} (2n) \\ & = \text{X}_{n} - \left[\frac{2\pi_{n}^{3} - 32n^{-6}}{6\pi_{n}^{5} - 3} \right] \\ & = \text{X}_{n} - \left[\frac{2\pi_{n}^{3} - 32n^{-6}}{6\pi_{n}^{5} - 3} \right] \\ & \text{X}_{n+1} = \frac{1}{2} - \frac{1}{6\pi_{n}^{5} + \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2} - \frac{1}{2\pi_{n}^{3} + \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2} - \frac{1}{2\pi_{n}^{5} - \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2} - \frac{1}{2\pi_{n}^{5} - \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2\pi_{n}^{5} - \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2\pi_{n}^{5} - \frac{1}{6\pi_{n}^{5} + \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2\pi_{n}^{5} - \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2\pi_{n}^{5} - \frac{1}{2\pi_{n}^{5} - \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2\pi_{n}^{5} - \frac{1}{2\pi_{n}^{5} - \frac{1}{6\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2\pi_{n}^{5} - \frac{1}{2\pi_{n}^{5} - \frac{1}{2\pi_{n}^{5} - 3}} \\ & \text{X}_{n+1} = \frac{1}{2\pi_{n}^{5} - \frac$$

Shifting Operator

Shift Operator (E)

$$\begin{split} &Ef(x) = f(x+h) \\ &E^n f(x) = f(x+nh) \\ &E^{-1} f(x) = f(x-h) \\ &E^{-n} f(x) = f(x-nh) \\ & \bigtriangleup f(x) = f(x+h) - f(x) \ \text{[forward difference operator]} \\ & \bigtriangledown f(x) = f(x) - f(x-h) \ \text{[backward difference operator]} \end{split}$$

Forward Difference Table

Construct Forward Difference Table : (from Rupa)

$$\nabla \mathcal{Y}_{0} = \mathcal{Y}_{1} - \mathcal{Y}_{0} = \nabla \mathcal{Y}_{1} - \nabla \mathcal{Y}_{0} - \nabla \mathcal{Y}_{0} = \nabla \mathcal{Y}_{1} - \nabla \mathcal{Y}_{0}$$

$$\nabla \mathcal{Y}_{0} = \mathcal{Y}_{1} - \mathcal{Y}_{0} = \nabla \mathcal{Y}_{1} - \nabla \mathcal{Y}_{0} - \nabla \mathcal{Y}_{0}$$

$$\nabla \mathcal{Y}_{1} = \mathcal{Y}_{2} - \mathcal{Y}_{1} = \nabla \mathcal{Y}_{2} - \nabla \mathcal{Y}_{1}$$

$$\nabla \mathcal{Y}_{1} = \mathcal{Y}_{2} - \mathcal{Y}_{1} = \nabla \mathcal{Y}_{2} - \nabla \mathcal{Y}_{1} - \nabla \mathcal{Y}_{0} - \nabla \mathcal{Y}_{0}$$

$$\nabla \mathcal{Y}_{2} = \mathcal{Y}_{3} - \mathcal{Y}_{2} \qquad \nabla \mathcal{Y}_{n-1} = \nabla \mathcal{Y}_{n} - \nabla \mathcal{Y}_{n-1} - \nabla \mathcal{Y}_{n-1} = \nabla \mathcal{Y}_{n-1} - \nabla \mathcal{Y}_{n$$

Interpolation

In short, interpolation is a process of determining the unknown values that lie in between the known data points

CS CamScanner

x = 3 5 7 9 11 y= 2 6 8 12 13

The difference between x_i and x_{i+1} is equal. 2 for this example. if, x= 3.5 (at starting) \rightarrow we will use Newton Forward Interpolation x= 5.1 - 7.9 \rightarrow we will use Central Difference Interpolation (Out of syllabus) x=9.5 (at end) \rightarrow we will use Newton Backward Interpolation

Newton Forward Interpolation

Proof (from Rupa):

Theory Neuron's formula for formeared m polation with equal interval (15)++++)}--(x)+++ $\int (x + hu) = -f(x) + u + u + f(x) + u(u-i) + u(u-i)(u-2)$ $\Delta^{2} f(a) + - - + u(u +)(u - 2) - - - (u - n + 1) - - - f(u)$ proof: Let y= f(x) and yo, y, y, -... y are values - controsponding to point to, xoth xo+2h, ---, xoth. Suppose we find to (f(x)=y at - point $\chi = \chi_0 + uh \left(\left(\psi = \frac{\eta_- \chi_0}{h} \right) \right) \left(\left(\alpha + 1 \right) - \left(n \right) \right) + \frac{1}{2}$ we know that By definition of E Eff(x) = f(x+uh) log ous g bins finion? $\neq E^{\forall} f(x_0) = f(x_0 + uh)$ $\Rightarrow f(x_0 + uh) = f(x_0)$ $f(x) = y, \quad \neq f(x_0) = y_0$

Math : (from Rupa)

Procedure:

- Create a difference table
- Use the formula and calculate
 - h = difference b/w two contiguous x
 - $f(a), f^2(a), \dots \rightarrow \text{upper value (1st row)}$

AY AY AY 0.312 0.0187 0.0010 20.0003 F. 91 - 6-90-16-18-1 20 23 0.3907 0.0177 _0.0013 26 0.1381 0.0161 29 0.1818 29 Hero, U= R-Xo $=\frac{21-20}{3}=0.3333$

CS CamScanner

according to Newston's for warral formula, tor) = - b $y(z) = y_0 + \frac{y_0}{2y_0} + \frac{y_0(u-1)}{2y_0} \Delta y_0 + \frac{y_0(u-1)}{2y_0} + \frac{y_0(u-1)}{2y_$ $= 0.312 + 0.3333 \times 0.0487 + 0.3333 (0.3333-1) (-0.0010)$ $= 0.312 + 0.3333 \times 0.0487 + 0.3333 (0.3333-1) (-0.0010)$ = 0.3333 (0.3333-1) (0.3333-2) (-0.0003) $= 0.0003 \times (-0.0003)$ $= 0.0003 \times (-0.0003)$ $= 0.0003 \times (-0.0003)$ $= 0.0003 \times (-0.0003)$

Newton Backward Interpolation

less important

- starting from below
- '+' sign instead of '-'

(start taking the value of y from bottom \rightarrow lower value)

Newton's Backward Difference formula

$$p = \frac{x \cdot x_n}{h}$$

$$y(x) = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \cdot \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!} \cdot \nabla^3 y_n + \frac{p(p+1)(p+2)(p+3)}{4!} \cdot \nabla^4 y_n + \dots$$

Missing Term in Interpolation

(YT: <u>https://www.youtube.com/watch?</u> v=P7fvPqdNOjM&ab_channel=B.K.TUTORIALS)

From Mishu:

CS CamScanner

Elles Frank

÷

$$D^{2} J_{0} = 0$$

$$=) (E-2)^{2} J_{0} =$$

$$=) (E-2)^{2} J_{0} =$$

$$=) (E^{2} - 2c_{1} E^{2-2} + 2c_{2} E^{2-2}) J_{0} = 0$$

$$=) (E^{2} - 2E' + 2) f(m) = 0$$

$$=) f(m+2m) - 2f(m+1m) + f(m) = 0$$

$$=) f(m+1m) - 2f(m+1m) + f(m) = 0$$

$$=) f(m+1m) - 2f(m+1m) + f(m) = 0$$

putting
$$n=0$$
 in (1)
 $f(30) - 2f(5) + f(0) = 0$
 $=> 18 - 2f(5) + 7 = 0$
 $=> -2f(5) = -25$
 $=> f(6) = 12.5$
putting $n=5$ in (1)
 $f(16) - 2f(10) + f(5) = 0$
 $=> f(15) - 30 + 12.5 = 0$
 $=> f(15) = 20.5$

Question Analysis

Newton Divided Difference

f(x) = f(x0) + (x-x0) f(x0, x1) + (x-x0) (x-x2) f(x0, x3, x2) + + (x-20) (x-212) (x-22) -... (x-27-2) f(x, 2-2) x: 4 = 7 = 20 = 23: 23 = f(3)f(3): 48 = 200 = 294 = 900 = 2028 = f(35)x f(x) $\Delta f(x) = D^2 f(x) = D^3 f(x) = D^4 f(x) = D^5 f(x)$ $\frac{\frac{160-48}{5-4}=59}{\frac{12}{5-4}=59} = \frac{97-59}{7-4} = 15 \qquad \frac{21-15}{10-4} = 1$ $\frac{\frac{293+300}{7-5}=97}{\frac{202-97}{10-5}=21} \qquad \frac{10-4}{10-4} = 1$ $\frac{\frac{11-4}{10-4}=202}{\frac{210-202}{10-5}=21} \qquad \frac{27-91}{10-5}=1$ $\frac{\frac{11-4}{10-9}=0}{\frac{11-3}{10-10}=23} = \frac{27}{10-5} = 1$ $\frac{1-1}{10-5}=0$ $\frac{2028-1000}{10-10} = 409$ 48 4 200 5 4 294-10 900 1210 22 2028 13-11 13 CS CamScanner Using Newton's interpolation for unequal interval f(8) = 48 + (8-4) × 52 + (8-4) (8-5) × 15 + (8-4) (8-5) (8-7) × 2 = 448 $f(36) = 48 + (15 - 4) \times 52 + (15 - 4) (15 - 5) \times 15 + (15 - 4) (15 - 5) (15 - 7) \times 15$ = 3150

What is Curve Fitting ?

(mark 4)

Curve fitting is *the process of constructing a curve, or mathematical function, that has the best fit to a series of data points*

Advantages:

- Simplicity: It is very easy to explain and to understand
- Applicability: There are hardly any applications where least squares doesn't make sense
- Theoretical Underpinning: It is the maximum-likelihood solution and, if the Gauss-Markov conditions apply, the best linear unbiased estimator

Disadvantages/Drawbacks:***

- Sensitivity to outliers
- Test statistics might be *unreliable* when the data is not normally distributed (but with many datapoints that problem gets mitigated)
- Tendency to overfit data (LASSO or Ridge Regression might be advantageous)
- It can be quite sensitive to the choice of starting values.
- It is not readily applicable to censored data

Numerical Integration

Numerical Integration is a process of evaluating or obtaining a definite integral from a set of numerical values of the integrand f(x).

$$h = rac{b-a}{n}$$

n = stripe, (generally, it's 6. why 6 ? \Rightarrow because 6 is divisible by 2 and 3 ? Why 2 & 3 ? Check below ?)

Trapezoidal Rule

$$\int_a^b f(x)dx=h(rac{y_0+y_n}{2}+y_1....+y_n)$$

Applicable for any no. interval.

Simpson one-third rule

 $\int_a^b f(x) dx = rac{h}{3} (y_0 + y_n + 4(y_1 + y_3 + ...) + 2(y_2 + y_4 + ...))$

Applicable for only even intervals.

Simpson three-by-eight rule

 $\int_a^b f(x)dx = rac{3h}{8}(y_0+y_n+3(y_1+y_2+y_4+y_5...)+2(y_3+y_6+...))$ Applicable for only **multiple of 3 intervals**.

WHY 6 ? \Rightarrow Because 6 is an even \cap multiple of 3. And it's the minimum which fillup both conditions.

Lagrange Interpolation

The **Lagrange interpolation** formula is a way to find a polynomial which takes on certain values at arbitrary points

(*) Apply inverse logrange's method to find the value of x
when
$$f(x) = 15$$
 from the given data.
 $\pi': 5 = 6 = 4 = 11$
 $f(x) = 12 = 13 = 14 = 16$
= Criven: $y = 15 = 10$ find π_s
 $\pi_0 = 5 = \pi_1 = 6$, $\pi_2 = 4$, $\pi_3 = 11$
 $y_0 = 12$, $y_0 = 73$, $y_0 = 14$, $y_0 = 11$
 $y_0 = 12$, $y_0 = 73$, $y_0 = 14$, $y_0 = 11$
 $g(y - 3x)(y - 3y)(y - 3y)(x - y - (y - 3x)(y -$

also find f(4) and f'(4)

Solving the equation for y and removing common factor

$$J = \frac{(n-n_2)(n-n_2)\cdots(n-n_1)}{(n_0-n_2)(n_0-n_2)\cdots(n_0-n_1)} \times J_0 + \dots$$

$$\frac{(n-n_0)(n-n_2)\cdots(n-n_0)}{(n_1-n_0)(n_1-n_2)\cdots(n_1-n_1)} \times J_n$$

$$\frac{(n-n_0)(n-n_2)\cdots(n-n_2)\cdots(n-n_{n-1})}{(n_1-n_0)(n_1-n_2)\cdots(n_1-n_1)} \times J_n$$
This equation is called Lagrange's equation for
interpolation.

Approaches to Prove Lagrange:

* Way to priove Lagrange 1) fre ... 20 "x1 # x2 x3... xn 70 21 2 J30 Jn 2) $f(x_1, x_0, ..., x_n) = 0$...(i) 3) $f(x_1, x_0, ..., x_n) = \frac{f(x)}{(x - x_0) - ... (x - x_n)} + 0$...(i) 40)=> 0 $= \frac{f(x)}{(x-x_0)(x-x_m)} + \cdots$ 4) Transposing all except first to the right side $\frac{\frac{1}{(x-x_0)\cdots (x-x_n)}}{(x_0-x_0)} = \frac{\frac{1}{30}}{(x_0-x_1)} + \cdots$ 5) Solving - the eag forz J, J = (x-x1) ... (x-xn) Jo + ... (70-3) (x-xn) Jo + ... (PTLOVE).

LU Decomposition Factorization

Fromple 7:2: Foolonize the matrix

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 2 & 3 \\ 3 & 4 & 2 \end{bmatrix}$$

$$P = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 2 & 3 \\ 3 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3_{23} & 1 & 0 \\ 3_{23} & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3_{23} & 1 & 0 \\ 3_{23} & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3_{23} & 1 & 0 \\ 3_{23} & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3_{23} & 1 & 0 \\ 3_{23} & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3_{23} & 1 & 0 \\ 3_{23} & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0_{33} & 0.12 & 0.12 & 0.13 \\ 0.132 & 0.122 & 0.123 + 0.12 & 0.133 \\ 0.132 & 0.123 + 0.123 & 0.133 \\ 0.132 & 0.123 + 0.123 + 0.123 \\ 0.133 & 0.124 + 0.123 + 0.123 \\ 0.133 & 0.124 + 0.123 + 0.123 \\ 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 + 0.124 \\ 0.134 + 0.124 + 0.124 + 0.124 +$$

To solve the Equation using LU Decomposition:

$$\begin{array}{c} \mathcal{L}\mathcal{U} \\ \mathcal{U} \\$$

Least Square Method

(<u>https://byjus.com/maths/least-square-method/#:~:text=The least square method</u> <u>is,the points from the curve</u>.)

The **least square method** is the process of finding the **best-fitting curve** or line of **best fit for a set of data points** by reducing the sum of the squares of the points from the curve.

The equation of least square line is given by Y = a + bX

Normal equation for 'a':

∑Y = na + b∑X

Normal equation for 'b':

 $\sum XY = a \sum X + b \sum X2$

Question 1.: Find a straight line that fits the following data

Xi	8	3	2	10	11	3	6	5	6	8
y _i	4	12	1	12	9	4	9	6	1	14

 $\gamma = 0$

Solution:

Straight line equation is y = a + bx.

The normal equations are

∑y = an + b∑x

 $\sum xy = a\sum x + b\sum x^2$

х	У	x ²	ху
8	4	64	32
3	12	9	36
2	1	4	2
10	12	100	120
11	9	121	99
3	4	9	12
6	9	36	54
5	6	25	30
6	1	36	6
8	14	64	112
∑x = 62	∑y = 72	∑x² = 468	∑xy = 503

Substituting these values in the normal equations,

10a + 62b = 72....(1) 62a + 468b = 503....(2) $(1) \times 62 - (2) \times 10$, 620a + 3844b - (620a + 4680b) = 4464 - 5030 -836b = -566 b = 566/836 b = 283/418 b = 0.677 Substituting b = 0.677 in equation (1), 10a + 62(0.677) = 72 10a + 41.974 = 72 10a = 72 - 41.974 10a = 30.026 a = 30.026/10 a = 3.0026 Therefore, the equation becomes, y = a + bx

Question 2 :

- y=something-something convert it to y=a+bx, and find new A, X, Y
- Create table
- Use those two formula and get the value of A,b ... convert A to a.

From Fayaz:

$$y_{z=x^{b}}$$

Euler Method:

The Euler's method is a first-order numerical procedure for **solving ordinary differential equations** (ODE) with a given initial value.

$$n = \frac{b - x_0}{h}$$

$$y_{i+1} = y_i + hf(x_i, y_i)$$

where,

- y_{i+1} is the next estimated solution value;
- y_i is the current value;
- h is the interval between steps;
- $f(x_i, y_i)$ is the value of the derivative at the current (x_i, y_i) point.

Euler proof (Approach) :

$$= \sum_{n=1}^{\infty} Ay = Anton0$$

$$= \sum_{n=1}^{\infty} Ay = Anton0$$

$$= \sum_{n=1}^{\infty} Ay = Ant(\frac{dy}{dx})_{0}$$

$$= \sum_{n=1}^{\infty} y_{0} + An f(\frac{dy}{dx})_{0}$$

$$= \sum_{n=1}^{\infty} y_{0} + h f(n, y_{0})$$

Modified Euler Method:

(https://www.youtube.com/watch?v=xLGDGeFZTnQ)

Instead of approximating f(x, y) by as in Euler's method. In the Modified Euler Method: we have the iteration formula

$$y_1^{(0)} = y_0 + hf(x_0, y_0)$$

$$y_1^{(n+1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})], n = 0, 1, 2 \dots$$

Take n = 1 to solve it by one step.

Accuracy

Euler method has a **truncation error.** To solve this problem modified Euler method is introduced. How ? \rightarrow

• It takes arithmetic average of an interval (Xi, Xi+1) instead of a point. bla bla bla....

Range Kutta Method

(<u>https://www.youtube.com/watch?v=fll1HdYy6vk&t=696s</u> - 2nd Order) (<u>https://www.youtube.com/watch?v=JhI6cLRjKHY</u> - 4th Order)

Runge–Kutta method is **an effective and widely used method for solving the initial-value problems of differential equations**. Runge–Kutta method can be used to construct high order accurate numerical method by functions' self without needing the high order derivatives of functions.

4th Order from Mishu:

Therefore,
Fourth order of Runge-butta method,

$$y_2 = y_0 + \frac{f}{6} (tx_1 + 2k_2 + 2k_3 + k_4)$$

when,
 $k_2 = hf(\pi_0, y_0)$
 $k_2 = hf(\pi_0, y_0)$
 $k_3 = hf(\pi_0, y_0 + \frac{1}{2}k_2)$
 $k_3 = hf(\pi_0, y_0 + \frac{1}{2}k_1)$
 $k_4 = hf(\pi_0, y_0 + k_3)$

Gauss Seidel Method

The Jacobi and Gauss-Seidel Iterative Methods

Iterative methods Jacobi and Gauss-Seidel in numerical analysis are based on the idea of successive approximations. This iterative method begins with one or two initial

https://byjus.com/maths/iterative-methods-gauss-seidel-and-jacobi/

Solve the system of equations using the Gauss-Seidel Method

 $45x_1 + 2x_2 + 3x_3 = 58$

 $-3x_1 + 22x_2 + 2x_3 = 47$

 $5x_1 + x_2 + 20x_3 = 67$

Obtain the result correct to three decimal places.

Solution:

First, check for the convergence of approximations,

45 > 2 + 3

22 > - 3 + 2

20 > 5 + 1

Hence, the given system of equations are strongly diagonally dominant, which ensures the convergence of approximations. Let us take the initial approximation, $x_1^{(0)} = 0$, $x_2^{(0)} = 0$ and

x₃⁽⁰⁾ = 0

First Iteration:

 $x_1^{(1)} = 1/45[58 - 2 \times 0 - 3 \times 0] = 1.28889$

 $x_2^{(1)} = 1/22[47 + 3 \times 1.28889 - 2 \times 0] = 2.31212$

 $x_3^{(1)} = 1/20[67 - 5 \times 1.28889 - 1 \times 2.31212] = 2.91217.$

Second Iteration:

 $x_1^{(2)} = 1/45[58 - 2 \times 2.31212 - 3 \times 2.91217] = 0.99198$ $x_2^{(2)} = 1/22[47 + 3 \times 0.99198 - 2 \times 2.91217] = 2.00689$

 $x_3^{(2)} = 1/20[67 - 5 \times 0.99198 - 1 \times 2.00689] = 3.00166.$

Likewise there will be modification in approximation with each iteration.

kth iteration	0	1	2	3	4
x ₁	0.000	1.28889	0.99198	0.99958	1.0000
x ₂	0.000	2.31212	2.00689	1.99979	1.99999
x ₃	0.000	2.91217	3.00166	3.00012	3.00000

After the fourth iteration, we get $|x_1^{(4)} - x_1^{(3)}| = |1.0000 - 0.99958| = 0.00042$

 $|x_2^{(4)} - x_2^{(3)}| = |1.99999 + 1.99979| = 0.00020$

 $|x_3^{(4)} - x_3^{(3)}| = |3.0000 - 3.00012| = 0.00012$

Since, all the errors in magnitude are less than 0.0005, the required solution is

Y₂ = 1 0 Y₂ = 1 99999 Y₂ = 3 0

Preferred Initial value, x1=x2=x3=0

Numerical Differentiation:

- Create Forward Difference Table
- Use the formulae for 1st, 2nd and 3rd derivative

*
$$f(a+xh) = f(a) + x \Delta f(a) + \frac{x(x-1)}{2!} \Delta f(a) + \frac{x(x-1)(x-2)}{5!} \Delta f(a)$$

 $= f(a) + x \Delta f(a) + \frac{x^2 - x}{2!} \Delta^2 f(a) + \frac{x^2 - x^2 - x^2 + 2x}{3!} \Delta^2 f(a)$
 $+ x \Delta f(a) + \frac{x^2 - x}{2!} \Delta^2 f(a) + \frac{x^2 - x^2 - x^2 + 2x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 - x^2 - x^2 + 2x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 - x^2 - x^2 - x^2 + 2x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 - x^2 - x^2 - x^2 - x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 - x^2 - x^2 - x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 - x^2 - x^2 - x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 - x^2 - x^2 - x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 - x^2 - x^2 - x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 - x^2 - x^2 - x}{3!} \Delta^2 f(a)$
 $+ \frac{x^2 - x^2 -$

Different between Gauss Elimination Method & Gauss Jordan Method

(<u>https://www.geeksforgeeks.org/difference-between-gauss-elimination-method-and-gauss-jordan-method-numerical-method/</u>)

In mathematics, the Gaussian elimination method is known as the row reduction algorithm for solving linear equations systems.

Gauss Elimination Method	Gauss Jordan Method
upper triangular system	reduces to diagonal matrix
For large systems, Gauss Elimination Method is not preferred.	For large systems, Gauss Jordan Method is preferred to Gauss Elimination Method
It does not seem to be easier	It seems to be easier
it requires about 50 percent fewer operation than	requires about 50 percent more operations than Gauss elimination Method.

EXTRA:

Divided Difference Proof Idea and finding nth Divided Difference

Brid, $f(a,b,c,d) = \frac{f(b,c,d) - f(a,b,c)}{d-a}$ if f(x) is given, then find the value of f(a), f(b) and solve this

Taylor:

(https://www.youtube.com/watch? v=82IDoaiYU0c&ab_channel=MKSTUTORIALSbyManojSir) . 7

* Taylor Method

-

$$d_{n+1} = d_n + h d'_n + \frac{h^2}{2!} d''_n + \frac{h^3}{3!} d'''_n +$$

where, h= x-xo

$$\begin{aligned} \chi_{2} = \chi_{1} + \eta_{1} = 1.1 + 0.1103 = 1.2103 \\ J_{1}'' = \Lambda + J_{1}' = 1 + 1.2103 = 2.2103 \\ J_{1}'' = 0 + J_{1}'' = 2.2103 \\ \\ J_{2} = J(1.2) = J_{1} + h J_{2}' + \frac{h^{2}}{2!} J_{1}'' + \frac{h^{3}}{3!} J_{1}'' + \cdots \\ = \Box \end{aligned}$$

W8001017HSV

Some interesting way to prove :

* Newton Raptison

Equation of largest, $\exists - \exists 0 = \exists (x_0)(x - x_0)$ $\Rightarrow x = x_0 - \frac{\exists (x_0)}{\exists (x_0)} [\exists = 0]$

* Secont & Regula Falsi

