
Noakhali Science & Technology University
Department of Computer Science & Telecommunication Engineering

ASSIGNMENT ON

Data Structures and Analysis

Submitted To:

Dr. Fateha Khanam Bappee
Associate Professor,

Computer Science & Telecommunication Engineering, NSTU.

Submitted By:

Mohammad Borhan Uddin
Roll: ASH2101008M,

Session: 2020-21

Department: Computer Science & Telecommunication Engineering

Solution:

To find the Huffman code, we must create Huffman Tree first. Then, we can find the Huffman

code by traversing the tree.

Character Code
A 00

B 0100
C 10

D 011

E 01010
F 01011

G 11

Figure 1 : Huffman Tree

Solution:

We know,

Weighted path length = ∑(
𝑛

𝑖=1

Path Length𝑖 ∗ Weight of Node𝑖)

 Where, Path Length is also considered as Level

We redraw the tree for our solving purpose.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ = 13 ∗ 2 + 23 ∗ 3 + 2 ∗ 4 + 29 ∗ 5 + 5 ∗ 5 + 19 ∗ 2 + 9 ∗ 2
 = 329

Figure 2: Figure 1 with Data

Solution:

(i) Find the weight matrix W of G.

The directed graph view below:

We’ll use 0 if there’s no edge between the nodes. Otherwise, we’ll put the weight of the edge

between the nodes.

The adjacent matrix:

W = [

0 7 0 0
3 0 2 0
0 0 0 5
6 1 4 0

]

(ii) Find the matrix Q of shortest paths using Warshall’s algorithm.

Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of

vertices in a weighted graph.

Steps:

For a graph with N vertices:

Step 1: Initialize the shortest paths between any 2 vertices with Infinity.

Step 2: Find all pair shortest paths that use 0 intermediate vertices, then find the shortest paths

that use 1 intermediate vertex and so on. until using all N vertices as intermediate nodes.

Step 3: Minimize the shortest paths between any 2 pairs in the previous operation.

Step 4: For any 2 vertices (i,j) , one should actually minimize the distances between this pair

using the first K nodes, so the shortest path will be: min(dist[i][k]+dist[k][j],dist[i][j]).

Let,

The initial matrix be

𝐷 = [

0 7 ∞ ∞
3 0 2 ∞
∞ ∞ 0 5
6 1 4 0

]

𝐷1 = [

0 7 ∞ ∞
3 0 2 ∞
∞ ∞ 0 5
6 1 4 0

]

𝐷2 = [

0 7 9 ∞
3 0 2 ∞
∞ ∞ 0 5
4 1 3 0

]

𝐷3 = [

0 7 9 14
3 0 2 7
∞ ∞ 0 5
4 1 3 0

]

𝐷4 = [

0 7 9 14
3 0 2 7
9 6 0 5
4 1 3 0

] = 𝑄

Where Q is the Shortest Path Matrix.

Solution:

Minimum spanning tree can be defined as the spanning tree in which the sum of the weights of

the edge is minimum. The weight of the spanning tree is the sum of the weights given to the

edges of the spanning tree.

We will use Prim’s Algorithm to find the Minimum spanning tree of the graph.

Steps:

o First, we must initialize a Minimum Spanning Tree with the randomly chosen vertex.

o Now, we must find all the edges that connect the tree in the above step with the new

vertices. From the edges found, select the minimum edge, and add it to the tree.

o Repeat step 2 until the minimum spanning tree is formed.

The minimum spanning tree of the graph is correct

because:

▪ It is weighted

▪ It is connected

▪ It has no cycle

▪ It is undirected

Figure 3: Minimum Spanning Tree

Solution:

The provided hash function ℎ(𝑥) = 𝑥 𝑚𝑜𝑑 5

35%5 = 0
2%5 = 2
18%5 = 3
6%5 = 1
3%5 = 3
10%5 = 0
8%5 = 3
5%5 = 0

Since the hash table uses chaining to resolve collisions, the keys are stored in linked lists at each

slot. When a key is inserted and there is already a key at the slot, the new key is added to the

end of the linked list at that slot.

Figure 4 : Hash Table & Linked List

